
z/OS

MVS Programming:
Writing Transaction Schedulers
for APPC/MVS

SA22-7622-00

���

z/OS

MVS Programming:
Writing Transaction Schedulers
for APPC/MVS

SA22-7622-00

���

Note
Before using this information and the product it supports, be sure to read the general information under “Appendix C.
Notices” on page C-1.

First Edition, March 2001

This edition applies to Version 1 Release 1 of z/OS (5694-A01), and to subsequent releases and modifications until
otherwise indicated in new editions.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication, or you
may address your comments to the following address:

International Business Machines Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY 12601-5400
United States of America

FAX (United States & Canada): 1+845+432-9405
FAX (Other Countries):

Your International Access Code +1+845+432-9405

IBMLink (United States customers only): IBMUSM10(MHVRCFS)
Internet e-mail: mhvrcfs@us.ibm.com
World Wide Web: http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number.

Make sure to include the following in your comment or note:
v Title and order number of this book
v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1991, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/servers/eserver/zseries/zos/webqs.html

Contents

Figures . v

About This Book . vii
Who Should Use This Book . vii
How to Use This Book . vii
Where to Find More Information. vii
Using LookAt to look up message explanations vii
Accessing licensed books on the Web viii

Summary of Changes . ix

Part 1. An Introduction to APPC/MVS System Services

Chapter 1. Transaction Scheduler Services in APPC/MVS 1-1

Chapter 2. General Transaction Scheduler Function: From Start-up to
Termination. 2-1

Part 2. APPC/MVS System Services Reference

Chapter 3. Invocation Details for APPC/MVS System Services 3-1
Syntax Conventions for the System Services 3-1
Linkage Conventions for the System Services 3-1
Parameter Description for Callable Services 3-1
Versions of Callable Services 3-3
Interface Definition File (IDF) 3-3

Chapter 4. APPC/MVS System Services Summary 4-1
Associate . 4-1
Cleanup_Address_Space . 4-5
Cleanup_TP . 4-9

Sending Error Log Information 4-14
Connect. 4-15
Control . 4-17
Define_Local_TP . 4-19
Disconnect. 4-22
Identify . 4-23
Join_Sysappc_Group . 4-30
Set_AS_Attributes . 4-33
Unidentify . 4-35

Chapter 5. Transaction Scheduler User Exits 5-1
XCF Message User Routine. 5-1

Environment . 5-2
Processing . 5-2
Programming Considerations 5-4
Entry Specifications . 5-4
Return Specifications . 5-5

Extract Exit . 5-6
Environment . 5-6
Exit Recovery . 5-7
Programming Requirements 5-7

© Copyright IBM Corp. 1991, 2001 iii

Entry Specifications . 5-7
Return Specifications . 5-8

TP Profile Conversion Exit . 5-8
Environment . 5-8
Exit Recovery . 5-8
Programming Requirements 5-9
Installation . 5-9
Entry Specifications . 5-9
Return Specifications . 5-10

TP Profile Syntax Exit . 5-10
Environment . 5-10
Exit Recovery. 5-11
Programming Requirements 5-11
Installation . 5-11
Entry Specifications . 5-11
Return Specifications . 5-12

Profile Syntax Message Routine 5-12
Environment . 5-12
Entry Specifications . 5-13
Return Specifications . 5-13

Part 3. Appendixes

Appendix A. Character Sets A-1

Appendix B. Previous Versions of APPC/MVS System Services B-1
ATBCMAS— Cleanup_Address_Space B-1
ATBCMTP— Cleanup_TP . B-4
ATBCTP1— Cleanup_TP. B-7
ATBIDEN— Identify . B-10
ATBIDN1— Identify . B-16
ATBMIGRP— Join_Sysappc_Group B-23
ATBUNID— Unidentify . B-25

Appendix C. Notices . C-1
Programming Interface Information C-2
Trademarks. C-2

Glossary . D-1

Index . X-1

iv z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Figures

1-1. Transaction Program Routing . 1-2
2-1. Transaction Schedulers in APPC/MVS . 2-1
4-1. ATBASOC - Associate . 4-2
4-2. ATBCAS1 - Cleanup_Address_Space Service. 4-6
4-3. ATBCTP3 - Cleanup_TP . 4-9
4-4. Format of GDS Variable for Sending Log Data 4-14
4-5. Format of Product ID in GDS Variable . 4-15
4-6. ATBCONN - Connect Service . 4-16
4-7. ATBCNTL - Control . 4-18
4-8. ATBDFTP - Define Local TP. 4-20
4-9. ATBDCON - Disconnect . 4-22
4-10. ATBIDN4 - Identify . 4-24
4-11. ATBJGP1 - Join_Sysappc_Group . 4-31
4-12. ATBSASA - Set_AS_Attributes . 4-34
4-13. ATBUID1 - Unidentify . 4-36
5-1. How APPC/MVS Messages are Mapped. 5-5
5-2. Parameter List of the TP Profile Syntax Exit 5-12
5-3. Input to the TP Profile Syntax Message Routine 5-13
B-1. ATBCMAS - Cleanup_Address_Space Service B-2
B-2. ATBCMTP - Cleanup_TP . B-4
B-3. ATBCTP1 - Cleanup_TP . B-7
B-4. ATBIDEN - Identify . B-11
B-5. ATBIDN1 - Identify . B-17
B-6. ATBMIGRP - Join_Sysappc_Group . B-24
B-7. ATBUNID - Unidentify . B-26

© Copyright IBM Corp. 1991, 2001 v

vi z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

About This Book

This book contains two parts. Part 1 gives a brief introduction to the APPC/MVS
system services and their use by transaction schedulers. Part 2 gives details about
each service, including function, requirements, syntax, linkage information,
parameters, and related exit routines.

Who Should Use This Book
This book is for system programmers who write transaction schedulers to use in
addition to or instead of the transaction scheduler that APPC/MVS provides. The
book assumes the user understands the concepts of APPC/MVS, and can code in
one or more high-level languages (HLLs) that APPC/MVS supports. Using this book
also requires you to be familiar with the operating system and the services that
programs running under it can invoke.

How to Use This Book
This book is one of the set of programming books for MVS. This set describes how
to write programs in assembler language or high-level languages, such as C,
FORTRAN, and COBOL. For more information about the content of this set of
books, see z/OS Information Roadmap.

Where to Find More Information
Before using this book, you should be familiar with APPC/MVS application
programming and administration information from z/OS MVS Programming: Writing
Transaction Programs for APPC/MVS and z/OS MVS Planning: APPC/MVS
Management.

Where necessary, this book references information in other books, using the
shortened version of the book title. For complete titles and order numbers of the
books for all products that are part of z/OS, see z/OS Information Roadmap.

Using LookAt to look up message explanations
LookAt is an online facility that allows you to look up explanations for z/OS
messages and system abends.

Using LookAt to find information is faster than a conventional search because
LookAt goes directly to the explanation.

LookAt can be accessed from the Internet or from a TSO command line.

You can use LookAt on the Internet at:
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

To use LookAt as a TSO command, LookAt must be installed on your host system.
You can obtain the LookAt code for TSO from the LookAt Web site by clicking on
News and Help or from the z/OS Collection, SK3T-4269.

To find a message explanation from a TSO command line, simply enter: lookat
message-id as in the following example:
lookat iec192i

© Copyright IBM Corp. 1991, 2001 vii

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/lookat.html

This results in direct access to the message explanation for message IEC192I.

To find a message explanation from the LookAt Web site, simply enter the message
ID. You can select the release if needed.

Note: Some messages have information in more than one book. For example,
IEC192I has routing and descriptor codes listed in z/OS MVS Routing and
Descriptor Codes. For such messages, LookAt prompts you to choose which
book to open.

Accessing licensed books on the Web
z/OS licensed documentation in PDF format is available on the Internet at the IBM
Resource Link Web site at:
http://www.ibm.com/servers/resourcelink

Licensed books are available only to customers with a z/OS license. Access to
these books requires an IBM Resource Link Web userid and password, and a key
code. With your z/OS order you received a memo that includes this key code.

To obtain your IBM Resource Link Web userid and password log on to:
http://www.ibm.com/servers/resourcelink

To register for access to the z/OS licensed books:

1. Log on to Resource Link using your Resource Link userid and password.

2. Click on User Profiles located on the left-hand navigation bar.

3. Click on Access Profile.

4. Click on Request Access to Licensed books.

5. Supply your key code where requested and click on the Submit button.

If you supplied the correct key code you will receive confirmation that your request
is being processed. After your request is processed you will receive an e-mail
confirmation.

Note: You cannot access the z/OS licensed books unless you have registered for
access to them and received an e-mail confirmation informing you that your
request has been processed.

To access the licensed books:

1. Log on to Resource Link using your Resource Link userid and password.

2. Click on Library.

3. Click on zSeries.

4. Click on Software.

5. Click on z/OS.

6. Access the licensed book by selecting the appropriate element.

About This Book

viii z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

http://www.ibm.com/servers/resourcelink
http://www.ibm.com/servers/resourcelink

Summary of Changes

Summary of Changes
for SA22-7622-00
z/OS Version 1 Release 1

The book contains information also presented in OS/390 MVS Programming:
Writing Schedulers for APPC/MVS.

© Copyright IBM Corp. 1991, 2001 ix

x z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Part 1. An Introduction to APPC/MVS System Services

APPC/MVS is an implementation of IBM’s Advanced Program-to-Program
Communication (APPC) in the MVS operating SYSTEM. APPC/MVS allows MVS
application programs to communicate on a peer-to-peer basis with other application
programs on the same MVS SYSTEM, different MVS systems, or different operating
SYSTEMs (including OS/2, OS/400 and VM) in an SNA network. These
communicating programs, known as transaction programs, together form
cooperative processing applications that can exploit the strengths of different
computer architectures.

Transaction programs can be scheduled on MVS by the APPC/MVS transaction
scheduler or by an alternative transaction scheduler. This book documents the
services that an alternative transaction scheduler must issue to interact with
APPC/MVS. These services are callable from high-level or assembler language
programs that are running in supervisor state or with PSW key 0-7.

© Copyright IBM Corp. 1991, 2001

z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Chapter 1. Transaction Scheduler Services in APPC/MVS

APPC/MVS provides a transaction scheduler that initiates and schedules
APPC/MVS transaction programs (TPs) in response to inbound requests from other
TPs in an SNA network. APPC/MVS also provides system services that let
installations use alternative transaction schedulers and assign TPs to run under
them. Those system services are applicable to MVS subsystems and other
applications that provide their own work schedulers and want to receive work
requests from APPC/MVS.

Transaction schedulers must be defined to a logical unit (LU) that represents the
point of entry for inbound requests from an SNA network. That definition must be
made in an APPCPMxx parmlib member on MVS. The transaction scheduler can
then use system services to receive inbound requests that are directed to the LU,
and can schedule the appropriate TPs to handle the requests. A transaction
scheduler can obtain TP-specific scheduling information from TP profiles that are
maintained by system administrators.

A transaction scheduler commonly has direct control over a number of address
spaces and schedules its applications into these subordinate address spaces; the
use of subordinate address spaces allows a transaction scheduler to access APPC
from its own environment for additional performance and function. Each transaction
scheduler may have its own term for these subordinate address spaces; for
example, the APPC/MVS transaction scheduler refers to them as transaction
initiators.

See Figure 1-1 on page 1-2 for an overview of how multiple transaction schedulers
and their subordinate address spaces operate under APPC/MVS. When APPC/MVS
receives an inbound allocate request for a particular LU, it sends a message
describing the request to the associated transaction scheduler. That scheduler can
then schedule the appropriate transaction program into a subordinate address
space to process the request. A transaction scheduler can also process inbound
allocate requests within its own address space.

© Copyright IBM Corp. 1991, 2001 1-1

The following transaction scheduler services are provided by APPC/MVS. See
Figure 2-1 on page 2-1 for an example of the sequence in which a transaction
scheduler calls these services.

Join_Sysappc_Group A callable service that transaction schedulers and
other system applications can use to join the XCF
group used by APPC/MVS. Each transaction
scheduler must be a member of the APPC XCF
group. APPC/MVS notifies all group members of
“general interest” events, such as APPC
initialization and termination, and notifies individual
transaction schedulers of inbound allocate requests
for TPs under their control. Transaction schedulers
must call the Join_Sysappc_Group service before
calling the Identify service.

Identify A callable service that a transaction scheduler can
use to make itself known to APPC/MVS. A
transaction scheduler issues Identify after it has
initialized itself and is ready to receive or schedule
requests from APPC/MVS. The transaction

Inbound
Work

TP
Profile

APPC/MVS
Transaction
Scheduler

Transaction
Scheduler

Message
Routine

Transaction
Initiator

APPC/MVS Transaction
Scheduler Subordinate
Address Spaces

Transaction
Scheduler Subordinate
Address Spaces

Transaction
Programs

Transaction
Programs

Message
Routine

APPC/MVS
Address
Space

Route To
Scheduler
Associated
With the LU

VTAM

Figure 1-1. Transaction Program Routing

1-2 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

scheduler must supply an XCF member token on
Identify to allow APPC/MVS to communicate with it.
A transaction scheduler must identify itself to
APPC/MVS before its subordinate address spaces
can connect to APPC/MVS.

Connect A callable service that a transaction scheduler can
use to inform APPC/MVS that an address space is
a subordinate address space of a particular
transaction scheduler. The subordinate address
space is said to be connected to that transaction
scheduler. Connect is required only for transaction
schedulers managing one or more subordinate
address spaces.

Set_AS_Attributes A callable service that a transaction scheduler can
use to prevent conversations allocated by a
subordinate address space from being associated
with the system default LU. This service is
important in situations where a subordinate address
space could allocate an APPC conversation before
the transaction scheduler connects the subordinate
address space to itself.

Associate A callable service that a transaction scheduler or
subordinate address space can use to associate or
relate a particular transaction program instance and
its conversations with either the transaction
scheduler address space or one of the transaction
scheduler’s subordinate address spaces. Any
previous association established between this TP
and another address space is broken. Associate
can also be used to provide or change a
unit_of_work_id for the transaction program.

Cleanup_TP A callable service that may be used to request
APPC/MVS to clean up all conversation resources
associated with a transaction program instance.
Conversation resources refers to network resources
such as control structures and buffers that are used
to manage the transaction program instance and its
conversations. This service can be called
asynchronously.

Cleanup_Address_Space A callable service that can be used to request
APPC/MVS to clean up all APPC/MVS resources
for an address space. APPC/MVS will clean up all
conversation resources for all transaction programs
associated with the address space at the time
Cleanup_Address_Space was issued. This service
can be called asynchronously.

Control A callable service that can be used by a transaction
scheduler to control the operational characteristics
of a specified LU. Control allows a transaction
scheduler to temporarily halt or resume processing
of inbound allocate requests received for the LU.

Define_Local_TP A callable service that can be used by a transaction

Chapter 1. Transaction Scheduler Services in APPC/MVS 1-3

scheduler to create a new local transaction program
instance to be associated with the transaction
scheduler address space. A transaction scheduler
may wish to create a new transaction program
instance so that it can allocate outbound
conversations under a transaction program distinct
from any inbound transactions it has received. The
Define_Local_TP service returns the transaction
program identifier (TP_ID), assigned by APPC/MVS,
that represents the new transaction program
instance just created. This TP_ID can then be
passed on the Allocate call or returned by the
transaction scheduler extract exit described below.

Disconnect A callable service that can be used by a transaction
scheduler to inform APPC/MVS that an address
space is no longer a subordinate address space of
a transaction scheduler.

Unidentify A callable service that can be used by a transaction
scheduler to reverse the effect of invocation of the
Identify service. Unidentify terminates all APPC
services for the specified transaction scheduler and
its subordinate address spaces.

After performing Unidentify, a transaction scheduler
can issue the IXCLEAVE macro to undo the effects
of its invocation of Join_Sysappc_Group.

1-4 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Chapter 2. General Transaction Scheduler Function: From
Start-up to Termination

The following figure is a general example of how a transaction scheduler uses
APPC/MVS services. Each number in Figure 2-1 corresponds to a possible step,
and to an explanation in the text immediately following the diagram.

Explanations:

Transaction
Scheduler
Subordinate
Address
Space

Schedule
transaction
to a waiting
subordinate
address space

Join SYSAPPC group

Set AS Attributes
(optional)

Notification of
APPC events

Connect

Unidentify

Associate

Cleanup TP

Cleanup Address Space(10)

(9)

(7)

(14)

(6)

(4)

(3)

(2)

(1)

(13)

(12)

(11)

Disconnect

Control

Define Local TP

(7)

(7)

Identify

TP Profile
ConversionExit

APPC/MVS
Services

(8) Extract Exit

Transaction
Program

ATBEXAI . . .

Transaction
Scheduler

XCF Message
User Routine
(required)

Request transaction
program attach

(5)

Figure 2-1. Transaction Schedulers in APPC/MVS

© Copyright IBM Corp. 1991, 2001 2-1

1. Each transaction scheduler must join the APPC XCF group. The transaction
scheduler must supply the address of its XCF message user routine, which will
receive messages from APPC/MVS. Join_Sysappc_Group returns a value to
be used as the member token parameter of Identify. A transaction scheduler
must invoke Join_Sysappc_Group before invoking Identify.

2. The transaction scheduler optionally calls the Set_AS_Attributes service to
prevent conversations allocated by a subordinate address space from being
associated with the system default LU. This prevention takes effect in cases
when the subordinate address space is not connected to a transaction
scheduler.

3. The transaction scheduler issues the Identify service to make itself known to
APPC/MVS. The Identify service indicates to APPC/MVS that the transaction
scheduler is fully operational and is ready to receive and schedule requests
from APPC/MVS. The Identify service also identifies possible exit routines for
TP profile conversion and information extraction.

4. APPC/MVS notifies all members of the APPC group of significant events, such
as APPC initialization and termination.

5. When an inbound allocate request is received, APPC/MVS performs checking,
obtains related data, and sends an XCF message requesting the transaction
scheduler to attach the TP. The transaction scheduler’s XCF message user
routine must recognize that the message describes the TP to be attached, and
process it.

6. Any time a new subordinate address space is created, the transaction
scheduler must issue Connect on behalf of the subordinate address space to
inform APPC/MVS that the newly created subordinate address space is owned
by the transaction scheduler. Connect must be issued for the subordinate
address space before any other APPC/MVS services are used in that address
space. Connect is only required for a transaction scheduler managing one or
more subordinate address spaces.

7. When a transaction scheduler receives a transaction request from APPC/MVS,
the transaction scheduler has the option of passing that work on to a
subordinate address space, or of processing the work itself. If the transaction
scheduler decides to pass the transaction on to a subordinate address space
to process, the transaction scheduler or subordinate address space must
invoke the Associate service. If the scheduler specifies a TP profile conversion
exit on the Identify service, and the requested transaction has a TP profile
entry that requires conversion, the exit is invoked to convert the entry.
APPC/MVS then saves the converted copy for future requests, avoiding
repeated conversion.

8. After the TP starts running, it might request information about the environment
in which it was scheduled. The transaction program can invoke the APPC/MVS
Extract_Information service to obtain information about its environment. The
Extract_Information service will use the transaction scheduler extract exit to
obtain the information to return to the transaction program.

9. Cleanup_TP can be called to cleanup a TP after it is processed, or reject an
inbound TP that cannot be processed (for example, because the TP was not
available). If the TP is rejected, you can use Cleanup_TP to send error log
data to the partner system or TP that submitted the request.

10. Cleanup_Address_Space can be issued to clean up all transaction programs in
an address space. The transaction scheduler will probably issue
Cleanup_Address_Space after each transaction program completes in a
subordinate address space. Cleanup_Address_Space can be used to clean up

2-2 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

conversations normally in error situations. In error situations, all conversations
are terminated, and the partner TPs are notified of termination with a
Deallocate_ABEND_SVC sense code.

11. The transaction scheduler can use the Control request to temporarily halt or
resume processing of inbound allocate requests received for a specific LU or
all LUs for that transaction scheduler.

12. The transaction scheduler can issue Define_Local_TP to create a TP instance
in its address space.

13. Disconnect is the opposite of Connect and is issued by the transaction
scheduler to inform APPC/MVS that the specified address space is no longer
under the control of the transaction scheduler. Address space termination is an
automatic Disconnect.

14. The transaction scheduler issues an Unidentify request to terminate use of
APPC/MVS services. Unidentify is the opposite of Identify.

Additional Considerations:

v The transaction scheduler can also issue IXCLEAVE to undo the effects of
Join_Sysappc_Group. IXCLEAVE is an XCF macro that disassociates a member
from its XCF group (in this case, the APPC XCF group). The input to the
IXCLEAVE macro is the member token that was passed back from
Join_Sysappc_Group. For more information about the IXCLEAVE macro,
including syntax, see z/OS MVS Programming: Sysplex Services Reference.

v The transaction scheduler may process protected conversations (conversations
with a synchronization level of syncpt). To do so, you must:

– Define it to an LU that is capable of handling conversations with a
synchronization level of syncpt. See the session management section of z/OS
MVS Planning: APPC/MVS Management for further information about enabling
LUs for protected conversations support.

– Be aware of changes for the following APPC/MVS system services:
- Cleanup_Address_Space (all versions)
- Cleanup_TP (all versions)
- Control
- Unidentify

v Additionally, the transaction scheduler may register as a resource manager of
protected conversations. Doing so allows the scheduler to obtain a privately
managed context that it can use to associate with the inbound Allocate request.

Note that designing and coding a scheduler to act as a resource manager is
relatively difficult. If you want to code an alternate transaction scheduler to
manage the contexts for protected conversations, you need to understand the
concepts and requirements for resource recovery in z/OS MVS Programming:
Resource Recovery. Design the scheduler to use APPC/MVS system services,
along with registration and context callable services, in the following sequence:

1. Join the APPC XCF group by calling the Join_Sysappc_Group service.
Optionally, call the Set_AS_Attributes service.

2. Register through the Register_Resource_Manager service, supplying a
resource manager name. The service returns a resource manager token that
the scheduler uses on subsequent calls to registration and context services.

3. Use the Identify service to identify itself to APPC/MVS; on this service call,
provide the resource manager name. After receiving an inbound Allocate
request for the LU associated with this scheduler, APPC/MVS creates a
privately managed context, and passes the context token to the scheduler
through an XCF message.

Chapter 2. General Transaction Scheduler Function: From Start-up to Termination 2-3

4. Change to the correct state to call context services. To do this, call the
Set_Exit_Information service to cause the server resource manager state to
change to SET state. The server is now in the correct state with context
services to issue context callable services.

5. Switch to the context passed through the XCF message, by issuing a call to
the Switch_Context service. After the service returns, the privately managed
context is the current context.

6. Receive the inbound protected conversation by issuing the Get_Conversation
service. As part of processing this service, APPC/MVS expresses interest in
the unit of recovery under the privately managed context, and sets the logical
unit of work identifier (LUWID) for the current context.

Depending on the design of the scheduler routines, either the scheduler or its
subordinate address space invoke the Associate service, and perform steps 4
through 6. If the scheduler uses subordinate address spaces, it must pass to
them the context token for the privately managed context.

2-4 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Part 2. APPC/MVS System Services Reference

This section describes the features and usage requirements of the APPC/MVS
SYSTEM services. System programmers coding authorized programs in high-level
languages or assembler can use these callable services to obtain the SYSTEM
services they need. This section includes detailed information—such as the
function, syntax, linkage information, and parameters— needed to use the SYSTEM
services.

© Copyright IBM Corp. 1991, 2001

z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Chapter 3. Invocation Details for APPC/MVS System Services

APPC/MVS system services provide access to system services not normally used
by transaction programs, but used by other MVS components, management
subsystems, and transaction schedulers. These system services have a standard
set of syntax and linkage requirements as well as parameter specification details
necessary for successful invocation.

Syntax Conventions for the System Services
All APPC/MVS system services have a general calling syntax as follows:
CALL routine_name (parameters,return_code)

The specific format for invoking APPC/MVS callable services through the assembler
CALL macro is:
CALL routine_name,(parm1,parm2,..return_code),VL

Linkage Conventions for the System Services
Callers must also use the following linkage conventions for all APPC/MVS system
services:

v Register 1 must contain the address of a parameter list, which is a list of
consecutive words, each containing the address of a parameter to be passed.
The last word in this list must have a 1 in the high-order (sign) bit.

v Register 13 must contain the address of an 18-word save area.

v Register 14 must contain the return address.

v Register 15 must contain the entry-point address of the service being called.

v If the caller is running in AR ASC mode, access registers 1, 13, 14, and 15 must
all be set to zero.

On return from the service, general and access registers 2 through 14 are restored
(registers 0, 1, and 15 are not restored).

Any high-level language that generates this type of interface can be used to invoke
APPC/MVS callable services.

Two methods can be used to access the APPC/MVS system services.

v The ATBCSS module from SYS1.CSSLIB can be link-edited with any program
that issues APPC/MVS system services.

v A program can issue the MVS LOAD macro for the APPC/MVS system service to
obtain its entry-point address, and then use that address to call the APPC/MVS
system service.

Parameter Description for Callable Services
All the parameters of the APPC/MVS callable system services are required
positional parameters. When you invoke a service, you must specify all the
parameters in the order listed. APPC/MVS checks all parameters for valid values,
regardless of whether the parameters are used in call processing. Even though a
language may allow parameters to be omitted, APPC/MVS services do not.

© Copyright IBM Corp. 1991, 2001 3-1

Note: Some parameters do not require values and allow you to substitute zeros or
a string of blanks for the parameter. The descriptions of the parameters
identify those that can be replaced by blanks or zeros, and when to do so.

In the descriptions of services in this document, each parameter is described as
supplied or returned:

Supplied You supply a value for the parameter in the call.

Returned The service returns a value in the named parameter when the call
is finished (for example, return_code).

Each parameter is also described in terms of its data type, character set, and
length:

Data type Either address, character string, integer, pointer, or structure.

Character set Applies only to parameters whose values are character strings and
governs the values allowed for that parameter. Possible character
sets are:

v No restriction

There is no restriction on the byte values contained in the
character string.

v Type A EBCDIC

The string can contain only uppercase alphabetics, numerics,
and national characters (@, $, #), and must begin with an
alphabetic or national character. Use of @, $, and # is
discouraged, because those characters display differently on
different national code pages.

v 01134

The string can contain uppercase alphabetics or numerics, with
no restriction on the first character.

v 00640

The string can contain upper- or lowercase alphabetics,
numerics, or any of 19 special characters with no restriction on
the first character.

Note: APPC/MVS does not allow blanks in 00640 character
strings.

For more detailed information about the characters in each
character set, see “Appendix A. Character Sets” on page A-1.

Length Depends on the data type of the parameter:

v For an address, integer, or pointer, the length indicates the size
of the field in bits.

v For a character-string parameter, the length value indicates the
number of characters that can be contained in a character type
parameter. The length can specify a single number or a minimum
and maximum number.

v For a structure parameter, the length value indicates the size of
the structure in bytes, or a minimum and maximum size if the
size of the structure is variable.

3-2 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Versions of Callable Services
Some APPC/MVS calls have a version number as the last character of the call
name (for example, ATBIDN1). That number corresponds to the version of
APPC/MVS in which the call was introduced.

To determine which calls are valid on a system, you can obtain the current
APPC/MVS version number from the APPC/MVS Version service. On any system,
valid APPC/MVS calls include those with no version number in the call name or a
version number less than or equal to the current APPC/MVS version number. For
example, calls to ATBIDEN and ATBIDN1 are both valid when the current
APPC/MVS version number is 1 or higher. Likewise, a call named ATBxxx2 would
be valid only when the current APPC/MVS version number is 2 or higher.

For more information about APPC/MVS version numbers, including how to obtain
the version number that is current on your system, see the Version service in z/OS
MVS Programming: Writing Transaction Programs for APPC/MVS.

Interface Definition File (IDF)
APPC/MVS provides an IDF (also called a pseudonym file) that defines variables
and values for parameters of APPC/MVS system services. The IDF can be included
or copied from a central library into programs that invoke APPC/MVS callable
services.

For APPC/MVS system services, the IDF for assembler language programs is the
ATBCSASM member of SYS1.MACLIB.

Chapter 3. Invocation Details for APPC/MVS System Services 3-3

3-4 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Chapter 4. APPC/MVS System Services Summary

Associate . 4-1
Cleanup_Address_Space . 4-5
Cleanup_TP . 4-9

Sending Error Log Information 4-14
Connect. 4-15
Control . 4-17
Define_Local_TP . 4-19
Disconnect. 4-22
Identify . 4-23
Join_Sysappc_Group . 4-30
Set_AS_Attributes . 4-33
Unidentify . 4-35

This chapter describes the specific system services available in APPC/MVS. The
function, invocation requirements, parameters, and other detailed information are
explained separately for each system service.

Callers of these system services must be in supervisor state or have a PSW key of
0-7. Callers that are not in supervisor state or do not have PSW key 0-7 end with
system completion (abend) code 0C2, with the exceptions of the
Join_Sysappc_Group and Set_Address_Space_Attributes services, which provide a
return code.

The ATBCSS module from SYS1.CSSLIB must be link-edited with any program that
issues these services.

The following table lists the system services that have more than one associated
call name. This chapter describes the current versions of the calls, which are the
preferred programming interfaces for these services. The previous versions are
described in “Appendix B. Previous Versions of APPC/MVS System Services” on
page B-1.

Table 4-1. APPC/MVS System Callable Services

Service Name Previous Call
Name

Current Call
Name

Reference for
Current Call

Cleanup_Address_Space ATBCMAS ATBCAS1 4-5

Cleanup_TP ATBCMTP,
ATBCTP1

ATBCTP3 4-9

Identify ATBIDEN,
ATBIDN1

ATBIDN4 4-23

Join_Sysappc_Group ATBMIGRP ATBJGP1 4-30

Unidentify ATBUNID ATBUID1 4-35

Associate
Use the Associate service to associate a particular transaction program and its
conversations with either the transaction scheduler address space or one of the
transaction scheduler’s subordinate address spaces. Any previous association
established between this TP and another address space is broken.

© Copyright IBM Corp. 1991, 2001 4-1

When a transaction scheduler receives an inbound allocate request from
APPC/MVS, the targeted TP is automatically associated with the transaction
scheduler. If the transaction scheduler passes that work to an awaiting subordinate
address space, the transaction scheduler or subordinate address space must
invoke the Associate service. If you do not use the Associate service for TPs
running in subordinate address spaces, APPC/MVS cannot clean up conversation
resources when the subordinate address space is terminated.

You can associate multiple transaction programs with a transaction scheduler, but
you can only associate one transaction program with a subordinate address space
at a time. A transaction scheduler is responsible for ensuring the integrity of TPs
that run at the same time in the transaction scheduler’s address space.

You can also use the Associate service to provide or change a unit_of_work_id for
the transaction program.

Environment

Authorization: Supervisor state or PSW key 0-7
Dispatchable unit mode: Task or SRB mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

TP_ID
Supplied/Returned parameter
v Type: Character string
v Char Set: No restriction
v Length: 8 bytes

Specifies the transaction program instance assigned to this transaction by
APPC/MVS. The TP_ID is a token that uniquely identifies an instance of a
program using APPC/MVS services. The TP_ID is passed to the transaction
scheduler in the inbound allocate request message. The TP_ID is also
generated when a program calls Define_Local_TP or is not started through
APPC and calls an allocate service.

A zero TP_ID can be specified if the Current_ASCB_ptr points to a subordinate
address space. A zero TP_ID specifies that the transaction program instance in

CALL ATBASOC (TP_ID,
Current_ASCB_ptr,
New_ASCB_ptr,
Unit_of_work_id,
Return_code
);

Figure 4-1. ATBASOC - Associate

Associate

4-2 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

the current address space is to be associated to the new address space. If the
Current_ASCB_ptr points to the transaction scheduler address space (that is, a
transaction scheduler address space is the one that called Identify), a zero
TP_ID will not be allowed.

A transaction scheduler cannot have the TP_ID for a locally started transaction
in a subordinate address space. In this situation, the transaction scheduler sets
this value to zero, and APPC/MVS sets the TP_ID upon return to the caller.

Current_ASCB_ptr
Supplied parameter
v Type: Pointer
v Char Set: N/A
v Length: 32 bits

Specifies the pointer to the address space control block (ASCB) of the address
space where the transaction program currently resides.

New_ASCB_ptr
Supplied parameter
v Type: Pointer
v Char Set: N/A
v Length: 32 bits

Specifies the pointer to the address space control block (ASCB) of the new
address space to associate with the transaction program instance.

Unit_of_work_id
Supplied parameter
v Type: Character string
v Char Set: 01134
v Length: 8 Bytes

Specifies an ID assigned to this program instance by the transaction scheduler
(for example, a job number or transaction code). This is an optional parameter
used only in APPC/MVS diagnostics. It correlates APPC activity to program
instances as they are known in APPC/MVS to program instances as they are
known to other components and subsystems. To specify no Unit_of_work_ID,
set the parameter to 8 blanks. If Unit_of_work_id is specified, TP_ID must also
be specified.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Associate may return one of the following decimal values in the return code
parameter:

Decimal Meaning

0 The transaction program association is successful.

8 The specified TP_ID does not exist.

12 Associate failed; this address space is already associated with
another TP_ID.

16 The Current_ASCB_ptr is a transaction scheduler address

Associate

Chapter 4. APPC/MVS System Services Summary 4-3

space and not a subordinate address space. A TP_ID of zero
cannot be specified for a transaction scheduler address space.

20 The value specified on the New_ASCB_ptr parameter is not
valid.

24 The value specified on the Current_ASCB_ptr parameter is not
valid.

28 The transaction program to be associated has an active APPC
request outstanding.

30 The combination of parameters is not valid.

32 The requested service is not supported in the caller’s
environment. For example, this return code will be given if the
caller invokes any of the transaction scheduler services while
holding a lock.

36 The requested transaction scheduler service must be invoked
from the transaction scheduler address space or from a
transaction scheduler subordinate address space.

38 The specified program is an APPC/MVS server. It cannot be
associated with another address space.

44 APPC/MVS is not active.

48 APPC/MVS services failure.

Characteristics and Restrictions

1. The caller does not have to reside in the current or new associated address
space of the TP instance.

2. This service cannot be called while there is an APPC request outstanding from
the transaction program instance (TP_ID) specified on the call. If the Associate
service is called while there is an outstanding APPC request, the system does
not perform the Associate service function, and the caller receives a return code
of 28 (decimal).

3. You cannot associate a TP that’s currently registered for an allocate queue
(through the Register_for_Allocates service). If the Associate service is called
while the TP is registered for an allocate queue, the system does not perform
the Associate service function, and the caller receives a return code of 38
(decimal). For more information about the Register_for_Allocates service, see
z/OS MVS Programming: Writing Servers for APPC/MVS.

4. The new address space specified on the New_ASCB_ptr parameter cannot be a
subordinate address space that is currently running a TP. If the new address
space is a subordinate address space that is running a TP, the system does not
perform the Associate service function, and the caller receives a return code of
12 (decimal).

5. Transaction schedulers that call the Associate service while in task mode should
not have any enabled unlocked task (EUT) functional recovery routines (FRRs)
established. For more information about EUT FRRs, see the section on
providing recovery in z/OS MVS Programming: Authorized Assembler Services
Guide.

6. Two process identifiers (TP_ID and New_ASCB_ptr) are supported to
accommodate different types of Associate scenarios. Table 4-2 on page 4-5
describes the action taken by APPC/MVS based upon how all these parameters
are specified on the Associate service.

Associate

4-4 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Table 4-2. Relationship between TP_ID and address space parameters

TP_ID Current
ASCB_ptr

New
ASCB_ptr

Action taken by APPC/MVS

0 0 0 Parameters not valid - Associate will give
return code 30.

0 variable 0 The transaction program residing in the
subordinate address space is associated
with the home address space of the caller. If
the transaction program does not reside in a
subordinate address space, Associate gives
a return code of 16. If no active transaction
program exists, Associate gives a return
code of 8.

0 0 variable The transaction program residing in the
home address space of the caller is
associated with the new address space
identified. If the transaction program does
not reside in a subordinate address space,
Associate gives a return code of 16. If no
active transaction program exists, Associate
gives a return code of 8.

0 variable variable The transaction program residing in the
current subordinate address space identified
is associated with the new address space
identified. If the transaction program does
not reside in a subordinate address space,
Associate gives a return code of 16. If no
active transaction program exists, Associate
gives a return code of 8.

variable - 0 The specified TP_ID is associated with the
home address space of the caller.

variable - variable The specified TP_ID is associated with the
new address space specified by
New_ASCB_ptr.

Cleanup_Address_Space
You can use the Cleanup_Address_Space service to clean up all APPC/MVS
resources for an address space. APPC/MVS cleans up all conversation resources
for all transaction programs that are associated with the address space at the time
the Cleanup_Address_Space is issued.

The Cleanup_Address_Space service may be invoked by a transaction scheduler
subordinate address space for a transaction program or job that terminates normally
or abnormally.

APPC/MVS deletes one or more TP_IDs from the system as a result of this call;
this cleanup process might occur asynchronously.

Environment

Authorization: Supervisor state or PSW key 0-7
Dispatchable unit mode: Task or SRB mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit

Associate

Chapter 4. APPC/MVS System Services Summary 4-5

ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

ASCB_ptr
Supplied parameter
v Type: Pointer
v Char Set: N/A
v Length: 32 bits

Specifies the pointer to the address space control block (ASCB) for the address
space to be cleaned up. All conversations for all transaction program instances
associated with this address space are to be deallocated. Invokers of this
service can get this value from the PSAAOLD field in the PSA for the current
address space or from the RMPLASCB field in the resource manager
parameter list (RMPL). If this parameter is set to zero, the home address space
of the program that issued the Cleanup_Address_Space call will be used as the
default address space.

Condition
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Specifies the deallocation condition that has occurred. This field is used to
generate the TYPE of deallocate and sense code that is issued by APPC/MVS
to the partner transaction program.

Valid values for this parameter are:

Value Meaning

0 Normal

Specifies that the transaction program completed normally,
even though it may have left active conversations. APPC/MVS
deallocates all conversations in a proper state for normal
deallocation with Deallocate Type(Sync_Level). All
conversations not in the proper state for a normal deallocation
are deallocated with Type(Abend_SVC).

1 System

CALL ATBCAS1 (ASCB_ptr,
Condition,
Notify_Type,
Return_code
);

Figure 4-2. ATBCAS1 - Cleanup_Address_Space Service

Cleanup_Address_Space

4-6 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Specifies that the transaction program terminated abnormally, or
the transaction program was terminated on behalf of some
action by the system (for example, the address space was
cancelled or forced). This condition is normally detected by
transaction scheduler’s subordinate address space.

All active conversations are deallocated with
Type(Abend_SVC).

Notify_type
Supplied parameter
v Type: Structure
v Char Set: N/A
v Length: 4-8 bytes

Specifies the type of processing and notification (synchronous or asynchronous)
requested for this service. Programs can request asynchronous processing,
which returns control to the program immediately and later notifies the program
by ECB when the service is complete. The possible types are:

v None

No notification is requested. The service is performed synchronously, and
control is returned to the caller when processing is complete. All returned
parameters are set on return to the caller. To specify no notification, set the
parameter value to a four-byte structure containing binary zeros.

v ECB

Programs can request asynchronous processing by specifying an ECB to be
posted when processing completes. To specify an ECB, set the parameter to
an eight-byte structure containing a fullword binary one (X'00000001')
followed by the address of a fullword area to be used as the ECB. The ECB
must reside in the home address space.

When you specify an ECB, control is returned before processing is complete,
with only the return code set. If the asynchronous request was accepted, the
return code is set to 0 to indicate that the service is being processed
asynchronously. Other returned parameters are filled in during asynchronous
processing, and the specified ECB is posted when all returned parameters
are set. The completion code field in the ECB contains the return code for
the service.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Cleanup_Address_Space may return one of the following decimal values in the
return code parameter:

Decimal Meaning

0 Request accepted. All conversations owned by the address
space are cleaned up asynchronously.

4 No conversations exist to be cleaned up.

8 The ASCB_ptr supplied does not point to a valid ASCB.

12 The asynchronous request failed. Resubmit the request with a
Notify_type of None or report the problem to IBM.

Cleanup_Address_Space

Chapter 4. APPC/MVS System Services Summary 4-7

20 APPC/MVS was cancelled during an asynchronous request for
this service.

32 The requested service is not supported in the caller’s
environment. For example, this return code will be given if the
caller invokes any of the transaction scheduler services while
holding a lock.

44 APPC/MVS is not active.

48 APPC/MVS services failure.

Characteristics and Restrictions

1. Conversations with active APPC requests are not immediately deallocated.
Once the partner TP responds, APPC/MVS returns a deallocate condition and
deallocates the conversation locally.

2. Cleanup_Address_Space may access fields located through the ASCB_ptr
parameter before it establishes recovery, to improve performance in the case
where no APPC resources must be cleaned up. If an incorrect ASCB_ptr is
passed to Cleanup_Address_Space, the caller might abnormally end with
completion code 0C4 when Cleanup_Address_Space uses the passed value to
get addressability to fields in the ASCB.

3. The Condition parameter defaults to 0 (normal) if an invalid condition is
specified.

4. If you call the Cleanup_Address_Space service while a unit of work is waiting
on an ECB as a result of an asynchronous call, APPC/MVS does not post the
ECB after performing the Cleanup_Address_Space operation (APPC/MVS
considers all resources associated with the address space “terminated”). The
application’s recovery environment must clean up the waiting ECB.

5. Transaction schedulers that call the Cleanup_Address_Space service while in
task mode should not have any enabled unlocked task (EUT) functional
recovery routines (FRRs) established. For more information about EUT FRRs,
see the information on providing recovery in z/OS MVS Programming:
Authorized Assembler Services Guide.

6. Regardless of the condition parameter value specified for this service,
APPC/MVS cleans up protected conversations differently, depending on whether
a syncpoint operation is in progress. When a syncpoint operation is in progress
for the current UR for the context with which the protected conversation is
associated, APPC/MVS does not immediately deallocate the conversation. The
syncpoint operation is allowed to complete. As part of the syncpoint processing,
the protected conversation might be deallocated, in which case no further
cleanup is required for that conversation.

If the conversation was not deallocated, however, cleanup processing proceeds
in the same manner as it does when a syncpoint operation is not in progress at
the time the Cleanup service is issued:

v The protected conversation is deallocated with TYPE(ABEND_SVC).

v The current UR is put into backout-required state.

v If the protected conversation is an inbound conversation, the logical unit of
work ID (LUWID) for the next UR is reset.

v The current UR and subsequent units of recovery for the context will not
include the protected conversation being cleaned up by this service.

Cleanup_Address_Space

4-8 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Cleanup_TP
Cleanup_TP is used to request that APPC/MVS clean up all conversation resources
associated with a transaction program instance. Conversation resources include
network resources, control blocks, and buffers that are used by APPC/MVS to
manage the transaction program instance and its conversations.

Call Cleanup_TP for one of the following reasons:

v The TP requested by an inbound allocate request is not recognized or not
available.

v The transaction scheduler cannot queue or schedule the transaction program at
this time.

v The requesting userid is not authorized to use the transaction program

v The TP was attached and executed, and has completed normally or abnormally.

The TP_ID is deleted from the system as a result of this call; this cleanup process
may occur asynchronously.

When calling Cleanup_TP, you can send error log information to a partner TP or
system. See “Sending Error Log Information” on page 4-14 for more information.

Environment

Authorization: Supervisor state or PSW key 0-7
Dispatchable unit mode: Task or SRB mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

TP_ID
Supplied parameter
v Type: Character string
v Char Set: No restriction
v Length: 8 bytes

CALL ATBCTP3 (TP_ID,
Condition,
Notify_Type,
Error_Log_Information_Length,
Error_Log_Information,
Return_Code
);

Figure 4-3. ATBCTP3 - Cleanup_TP

Cleanup_TP

Chapter 4. APPC/MVS System Services Summary 4-9

Specifies the transaction program instance that is to be cleaned up. The
transaction program instance does not have to be associated with the caller’s
address space. All conversations owned by this transaction program instance
are to be deallocated.

Condition
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Specifies the deallocation condition that has occurred. This field is used to
determine the type of deallocate and sense code that is issued by APPC/MVS
to the partner transaction program.

Note: If you specify a value of zero on the Condition parameter, you cannot
send error log information to partner TPs or systems.

Valid values for this parameter are:

Value Meaning

0 Normal

Specifies that the transaction program completed normally,
even though it might have left active conversations. APPC/MVS
deallocates all conversations in a proper state for normal
deallocation with Deallocate Type(Sync_Level). All
conversations not in the proper state for a normal deallocation
are deallocated with Type(Abend_SVC).

1 System

Specifies that the transaction program terminated abnormally, or
the transaction program was terminated on behalf of some
action by the system (for example, the address space was
cancelled or forced). This condition is normally detected by
transaction scheduler’s subordinate address space. All active
conversations are deallocated with TYPE(Abend_SVC).

2 TP_Not_Available_No_Retry

Specifies that the transaction scheduler is not able to schedule
the transaction because of a condition that is not temporary.
The partner should not attempt to retry the request. APPC/MVS
deallocates the conversation with a sense code of X'084C0000'.

3 TP_Not_Available_Retry

Specifies that the transaction scheduler is not able to schedule
the transaction because of a condition that might be temporary.
The partner can attempt to retry the request. APPC/MVS
deallocates the conversation with a sense code of X'084B6031'.

4 TPN_Not_Recognized

Specifies that the transaction scheduler does not recognize the
TP_Name passed to it. APPC/MVS deallocates the
conversation with a sense code of X'10086021'.

5 Security_Not_Valid

Cleanup_TP

4-10 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Specifies that the transaction scheduler detected a security
violation. APPC/MVS deallocates the conversation with a sense
code of X'080F6051'.

6 Sync_Level_Not_Supported_Pgm

Specifies that the transaction program does not support the
level of synchronization requested by the sender. APPC/MVS
deallocates the conversation with a sense code of X'10086041'.

7 User_Not_Authorized_For_TP

Specifies that the user is not authorized to access the
transaction program. APPC/MVS deallocates the conversation
with a sense code of X'080F0983'.

Notify_type
Supplied parameter
v Type: Structure
v Char Set: N/A
v Length: 4-8 bytes

Specifies the type of processing and notification (synchronous or asynchronous)
requested for this service. Programs can request asynchronous processing,
which returns control to the program immediately and later notifies the program
by ECB when the service is complete. The possible types are:

v None

No notification is requested. The service is performed synchronously, and
control is returned to the caller when processing is complete. All returned
parameters are set on return to the caller. To specify no notification, set the
parameter value to a four-byte structure containing binary zeros.

v ECB

Programs can request asynchronous processing by specifying an ECB to be
posted when processing completes. To specify an ECB, set the parameter to
an eight-byte structure containing a fullword binary one (X'00000001')
followed by the address of a fullword area to be used as the ECB. The ECB
must reside in the home address space.

When you specify an ECB, control is returned before processing is complete,
with only the return code set. If the asynchronous request was accepted, the
return code is set to 0 to indicate that the service is being processed
asynchronously. Other returned parameters are filled in during asynchronous
processing, and the specified ECB is posted when all returned parameters
are set. The completion code field in the ECB contains the return code for
the service.

Error_log_information_length
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 4 bytes

Specifies the length of the error log information specified on the
Error_log_information parameter:

v If error log information is not to be sent, specify 0 on this parameter.

v If error log information is to be sent, specify the number of bytes of error log
information provided, in the range 1-512 (decimal).

Cleanup_TP

Chapter 4. APPC/MVS System Services Summary 4-11

If you specify a value greater than 512 on the Error_log_information_length
parameter, the system returns return code 16 (decimal) to the caller.

Error_log_information
Supplied parameter
v Type: Character string
v Char Set: N/A
v Length: 0-512 bytes

Specifies error log information to be sent to all partner systems running TPs
that have established conversations with the TP to be cleaned up. This
parameter contains information about an error that occurred while scheduling a
TP. The scheduler can send error log information only when the Condition
parameter (for the Cleanup_TP service) specifies one of the following values:
v System
v TP_Not_Available_No_Retry
v TP_Not_Available_Retry
v TPN_Not_Recognized
v Security_Not_Valid
v Sync_Level_Not_Supported_Pgm
v User_Not_Authorized_For_TP

If you do not specify one of the above values on the Condition parameter,
Cleanup_TP does not send error log information, even if it is specified on this
parameter.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

When APPC/MVS returns control to your TP, the Return_code parameter
contains one of the following decimal return codes:

Return Code Meaning and Action

0 Meaning: Successful completion. All conversations owned by the
transaction program instance will be cleaned up asynchronously.

Action: None required.

4 Meaning: No conversations exist to be cleaned up.

Action: None required.

8 Meaning: The TP_ID parameter specified a TP instance that does not
exist.

Action: Specify a valid TP instance on the TP_ID parameter.

12 Meaning: An asynchronous request failed.

Action: Specify a Notify_Type of None on the call to Cleanup_TP, then
submit the request again. If the problem persists, contact the IBM
Support Center.

16 Meaning: The Error_log_information_length parameter contains a value
that is greater than 512 (decimal). The transaction scheduler can only
send up to 512 (decimal) bytes of error log information.

Action: Specify a value between 0 and 512 (decimal) on the
Error_log_information_length parameter.

Cleanup_TP

4-12 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Return Code Meaning and Action

20 Meaning: APPC/MVS was cancelled during an asynchronous request
for this service.

Action: Contact the operator to determine if APPC/MVS can be
restarted.

32 Meaning: The requested service is not supported in the caller’s
environment. For example, the caller might be holding a lock.

Action: See the “Environment” section for the required environment for
calling Cleanup_TP. Ensure that the scheduler calls Cleanup_TP while
running in the required environment.

44 Meaning: APPC/MVS is not active.

Action: Contact the operator to determine if APPC/MVS can be
restarted.

48 Meaning: APPC/MVS services failure.

Action: Contact the IBM Support Center.

Characteristics and Restrictions

1. Conversations with active APPC requests are not immediately deallocated.
Once the partner TP responds, APPC/MVS returns a deallocate condition and
deallocates the conversation locally.

2. The Condition parameter defaults to 0 (normal) if an invalid condition is
specified.

3. If you call the Cleanup_TP service while a unit of work is waiting on an ECB as
a result of an asynchronous call, APPC/MVS does not post the ECB after
performing the Cleanup_TP operation (APPC/MVS considers all resources
associated with the TP “terminated”). The application’s recovery environment
must clean up the waiting ECB.

4. Transaction schedulers that call the Cleanup_TP service while in task mode
should not have any enabled unlocked task (EUT) functional recovery routines
(FRRs) established. For more information about EUT FRRs, see the information
on providing recovery in z/OS MVS Programming: Authorized Assembler
Services Guide.

5. Regardless of the condition parameter value specified for this service,
APPC/MVS cleans up protected conversations differently, depending on whether
a syncpoint operation is in progress. When a syncpoint operation is in progress
for the current UR for the context with which the protected conversation is
associated, APPC/MVS does not immediately deallocate the conversation. The
syncpoint operation is allowed to complete. As part of the syncpoint processing,
the protected conversation might be deallocated, in which case no further
cleanup is required for that conversation.

If the conversation was not deallocated, however, cleanup processing proceeds
in the same manner as it does when a syncpoint operation is not in progress at
the time the Cleanup service is issued:

v The protected conversation is deallocated with TYPE(ABEND_SVC).

v The current UR is put into backout-required state.

v If the protected conversation is an inbound conversation, the logical unit of
work ID (LUWID) for the next UR is reset.

v The current UR and subsequent units of recovery for the context will not
include the protected conversation being cleaned up by this service.

Cleanup_TP

Chapter 4. APPC/MVS System Services Summary 4-13

Sending Error Log Information
When calling Cleanup_TP, you can send error log information to a partner TP or
system. Error log information describes errors that your scheduler finds when it tries
to schedule a TP. Programmers for partner systems can use the information to help
diagnose errors in their TPs. For example, Cleanup_TP can send error log
information that indicates a partner TP name specified on an inbound allocate
request is not acceptable to your scheduler.

The error log information is sent to all systems with TPs that have established
conversations with the TP to be cleaned up. If the partner system is MVS, the
partner TP can use the Error_Extract service to return the error log information (see
z/OS MVS Programming: Writing Transaction Programs for APPC/MVS for
information about how to use Error_Extract). If the partner system is not MVS, the
partner system must determine how to obtain and use the error log information.
Your can specify error log information for both basic and mapped conversations.

To send error log information to a partner TP or system, you must specify a value
other than Normal on the Condition parameter for this service. APPC/MVS sends
the error log information in a generalized data stream (GDS) variable, and then
sends an FMH-7 to notify the partner system that an error occurred. The GDS
variable has the format shown in Figure 4-4:

Figure 4-5 on page 4-15 shows the format of the product ID subvector in the GDS
variable shown in the previous figure.

PID Subvector

Product Set ID

Msg
Length

1Byte

Rsvd
X'00'

PSID
Key
X'10'

PSID
Length
X'0010'

GDS
Variable
Length

GDS
Variable

ID
X'12E1'

PSID
Subv

Length
X'0E'

1Byte1Byte2 Bytes 2 Bytes 2 Bytes2 Bytes

Msg
Text

Figure 4-4. Format of GDS Variable for Sending Log Data

Cleanup_TP

4-14 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Example

In this example, assume that an alternate scheduler cannot schedule a TP because
the user who ran the TP did not have access to a required data set. The scheduler
calls Cleanup_TP to clean up the conversation. The scheduler sends a sense code
of user_not_authorized_for_TP and error log information to the partner TP:

Condition = User_not_authorized_for_TP;
Notify_type = ATB_None;
Error_log_information = ' ';
Error_log_information = 'User does not have access to data set 'user.dsname'';
Error_log_information_length = Length(Error_log_information);
CALL ATBCTP3(TP_ID,

Condition,
Notify_type,
Error_log_information_length,
Error_log_information,
Return_code,
);

Connect
The Connect service is used by a transaction scheduler to inform APPC/MVS that
an address space is a subordinate address space of a particular transaction
scheduler. The subordinate address space is said to be connected to that
transaction scheduler. The Connect service must be issued by the same address
space that issued the Identify. Connect is only required for a transaction scheduler
managing subordinate address spaces.

A connection is required to provide an integrity structure for APPC/MVS. When a
transaction scheduler issues an Identify, an implicit Connect is assumed. A
transaction scheduler may associate or reassociate transaction programs from one

Software
Product

Common
Name
Key
X'06'

PID
Subvector

Class
X'04'

PID
Subvector

Length
X'0B'

PID
Subvector

Key
X'11'

Software
Product

Common
Name
Length
X'08'

1 Byte1 Byte1 Byte 1 Byte1 Byte

Software
Product

Common
Name

*

Figure 4-5. Format of Product ID in GDS Variable

Cleanup_TP

Chapter 4. APPC/MVS System Services Summary 4-15

subordinate address space to another. The connection allows APPC/MVS to ensure
that TPs attached from one scheduler are always associated with address spaces
connected with that scheduler.

A connection also enables APPC/MVS to process outbound Allocate requests from
an MVS program. The base LU name of the transaction scheduler associated with
the outbound allocate request is defined in the APPCPMxx parmlib member.

An address space remains connected to a particular transaction scheduler until the
address space is terminated or issues an explicit Disconnect. (See “Disconnect” on
page 4-22.) Memory termination causes an automatic Disconnect.

Environment

Authorization: Supervisor state or PSW key 0-7
Dispatchable unit mode: Task mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

ASCB_ptr
Supplied parameter
v Type: Pointer
v Char set: N/A
v Length: 32 bits

Specifies the pointer to the address space control block (ASCB) of the address
space being connected to the transaction scheduler.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Connect may return one of the following decimal values in the return code
parameter:

Decimal Meaning

0 Address space successfully connected.

4 ASCB_ptr was invalid.

CALL ATBCONN (ASCB_ptr,
Return_code
);

Figure 4-6. ATBCONN - Connect Service

Connect

4-16 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

8 Connect was rejected, having specified an address space that
already had outstanding APPC conversations or service calls,
or an address space that was already connected. You might
need to call Cleanup_Address_Space before trying to Connect.

32 The requested service is not supported in the caller’s
environment. For example, this return code will be given if the
caller invokes any of the transaction scheduler services while
holding a lock.

34 The requested transaction scheduler service must be invoked
from a transaction scheduler address space.

44 APPC/MVS is not active.

48 APPC/MVS services failure.

Characteristics and Restrictions

1. The caller’s home address space must be the transaction scheduler address
space (that is, the same home address space that issued the Identify).

2. A transaction scheduler must issue Identify before it can issue a Connect.

3. Transaction schedulers that call the Connect service should not have any
enabled unlocked task (EUT) functional recovery routines (FRRs) established.
For more information about EUT FRRs, see the information on providing
recovery in z/OS MVS Programming: Authorized Assembler Services Guide.

Control
The Control service is used by a transaction scheduler to control the operational
characteristics of a specified LU. Control allows a transaction scheduler to
temporarily halt or resume processing of inbound Allocate requests received for the
LU.

When a transaction scheduler requests that processing be halted for an LU, all
subsequent inbound Allocate requests received for that LU are rejected with a
sense code of X'084C0000' (TP_Not_Available_No_Retry). However, inbound
Allocate requests that have already been received and are being processed will not
be halted. Thus, the transaction scheduler can receive inbound Allocate request
messages for the LU after Control has been issued. In addition, if the scheduler is
processing protected conversations, APPC/MVS continues to accept inbound
resynchronization requests for the LU, even after the scheduler issues the Control
service. For more information about protected conversations, see “Chapter 2.
General Transaction Scheduler Function: From Start-up to Termination” on
page 2-1.

The LU specified must be assigned to the transaction scheduler requesting the
service through the SCHED keyword on the LUADD statement in the APPCPMxx
parmlib member.

Environment

Authorization: Supervisor state or PSW key 0-7
Dispatchable unit mode: Task mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts

Connect

Chapter 4. APPC/MVS System Services Summary 4-17

Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

LU_name
Supplied parameter
v Type: Character string
v Char Set: 01134
v Length: 8 bytes

Specifies the name of the LU.

Function
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

The Function specifies how the LU operation is to be changed. Valid values for
this parameter are:

Value Meaning

0 Halt_Input

Specifies that APPC/MVS should temporarily halt processing of
inbound Allocate requests to the specified LU. The requests are
rejected with a sense code of X'084C0000'
(TP_Not_Available_No_Retry).

1 Resume_Input

Specifies that APPC/MVS should resume processing of inbound
Allocate requests to the specified LU.

2 Halt_All_Input

Specifies that APPC/MVS should temporarily halt processing of
Allocate requests to all of the LUs belonging to the transaction
scheduler. The requests are rejected with a sense code of
X'084C0000' (TP_Not_Available_No_Retry). Only those LUs
currently in Active or Outbound_Only state are immediately
placed in Outbound_Only state. Those LUs currently in Pending
state are eventually placed in Outbound_Only state; the update
is not immediate. The state of LUs added by a subsequent SET
command will be set to Outbound_Only. (See the
LU_Initial_Status parameter of the Identify service for more
information.)

CALL ATBCNTL (LU_name,
Function,
Return_code
);

Figure 4-7. ATBCNTL - Control

Control

4-18 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

3 Resume_All_Input

Specifies that APPC/MVS should resume processing of Allocate
requests to all of the LUs belonging to the transaction
scheduler. Only those LUs currently in Active or Outbound_Only
state are immediately resumed. Those LUs currently in Pending
state are eventually placed in Active state; the update is not
immediate. The state of LUs added by a subsequent SET
command will be set to Active. (See the LU_Initial_Status
parameter of the Identify service for more information.)

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Control might return one of the following decimal values in the return code
parameter:

Decimal Meaning

0 Request accepted.

4 Request accepted. One or more requested LUs were not in the
appropriate state for the requested function.

8 The LU_name parameter was not valid or was not assigned to
the transaction scheduler making the request.

12 The LU is in a state (pending or in_termination) that cannot be
changed by this service.

16 The function value specified was not valid.

32 The requested service is not supported in the caller’s
environment. For example, this return code will be given if the
caller invokes any of the transaction scheduler services while
holding a lock.

34 The requested transaction scheduler service must be invoked
from a transaction scheduler address space.

44 APPC/MVS is not active.

48 APPC/MVS services failure.

Characteristics and Restrictions

Transaction schedulers that call the Control service should not have any enabled
unlocked task (EUT) functional recovery routines (FRRs) established. For more
information about EUT FRRs, see the information on providing recovery in z/OS
MVS Programming: Authorized Assembler Services Guide.

Define_Local_TP
Define_Local_TP can be used by a transaction scheduler to create a new local
transaction program ID (TP_ID) to be associated with the transaction scheduler
address space. A transaction scheduler may wish to create a new TP_ID so it can
allocate outbound conversations under a TP_ID distinct from any TP_IDs it has
received. The Define_Local_TP service will return the TP_ID that represents the
new transaction program just created. This TP_ID can then be passed on the

Control

Chapter 4. APPC/MVS System Services Summary 4-19

Allocate call or returned by the transaction scheduler extract. The Define_Local_TP
service can only be used by a transaction scheduler that has identified itself to
APPC/MVS.

The Define_Local_TP service gives the transaction scheduler control over defining
one or more TP_IDs in the transaction scheduler address space. The transaction
scheduler extract exit will be used to resolve ambiguity whenever there is more than
one transaction program defined in the address space. See “Extract Exit” on
page 5-6 for more details on this exit.

Environment

Authorization: Supervisor state or PSW key 0-7
Dispatchable unit mode: Task mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

TP_name_length
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

TP_name_length specifies the length of data contained in the TP_name
parameter.

TP_name
Supplied parameter
v Type: Character string
v Char Set: 00640 or Type A
v Length: 1 - 64 bytes

TP_name specifies the name of the local transaction program to be associated
with this transaction program instance.

LU_name
Supplied parameter
v Type: Character string
v Char Set: Type A

CALL ATBDFTP (TP_name_length,
TP_name,
LU_name,
TP_ID,
Return_code
);

Figure 4-8. ATBDFTP - Define Local TP

Define_Local_TP

4-20 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

v Length: 8 bytes

LU_name specifies the name of the LU with which the newly created TP_ID
should be associated. This must be an LU that is assigned to the transaction
scheduler. If the LU_name parameter specified is all blanks, the base LU, if any,
for the transaction scheduler will be used.

TP_ID
Returned parameter
v Type: Character string
v Char Set: N/A
v Length: 8 bytes

TP_ID is a token that represents the transaction program instance that was just
created.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Define_Local_TP may return one of the following decimal values in the return
code parameter:

Decimal Meaning

0 Request accepted. The TP_ID is returned in parameter TP_ID.

4 Request rejected. The LU specified was not an LU that is
assigned to the transaction scheduler.

8 Request rejected. The TP name is not a valid character string.

32 The requested service is not supported in the caller’s
environment. For example, this return code will be given if the
caller invokes any of the transaction scheduler services while
holding a lock.

34 The requested transaction scheduler service must be invoked
from a transaction scheduler address space.

44 APPC/MVS is not active.

48 APPC/MVS services failure.

Characteristics and Restrictions

1. The caller must be from a transaction scheduler address space (from the
transaction scheduler address space that issued the Identify).

2. If an LU_name of all blanks is specified, and there is no base LU defined for the
transaction scheduler, the request will be rejected with return code 4.

3. Transaction schedulers that call the Define_Local_TP service should not have
any enabled unlocked task (EUT) functional recovery routines (FRRs)
established. For more information about EUT FRRs, see the information on
providing recovery in z/OS MVS Programming: Authorized Assembler Services
Guide.

Define_Local_TP

Chapter 4. APPC/MVS System Services Summary 4-21

Disconnect
The Disconnect service can be used by a transaction scheduler to inform
APPC/MVS that an address space is no longer one of its subordinate address
spaces.

An address space remains connected to a particular transaction scheduler until the
address space is terminated or issues an explicit Disconnect. Address space
termination is an implicit Disconnect. Normally address space termination is all that
is required to disconnect an address space from a transaction scheduler.

Environment

Authorization: Supervisor state or PSW key 0-7
Dispatchable unit mode: Task mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

ASCB_ptr
Supplied parameter
v Type: Pointer
v Char Set: N/A
v Length: 32 bits

Specifies the pointer to the address space control block (ASCB) of the address
space being disconnected from the transaction scheduler.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Disconnect might return one of the following decimal values in the return code
parameter:

Decimal Meaning

0 Address space was successfully disconnected.

4 The value specified on the ASCB_ptr is not valid.

CALL ATBDCON (ASCB_Ptr,
Return_Code
);

Figure 4-9. ATBDCON - Disconnect

Disconnect

4-22 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

8 The address space specified was not a subordinate address
space connected to the transaction scheduler.

32 The requested service is not supported in the caller’s
environment. For example, this return code will be given if the
caller invokes any of the transaction scheduler services while
holding a lock.

34 The requested transaction scheduler service must be invoked
from a transaction scheduler address space.

44 APPC/MVS is not active.

48 APPC/MVS services failure.

Characteristics and Restrictions

Transaction schedulers that call the Disconnect service should not have any
enabled unlocked task (EUT) functional recovery routines (FRRs) established. For
more information about EUT FRRs, see the information on providing recovery in
z/OS MVS Programming: Authorized Assembler Services Guide.

Identify
The Identify service is used by a transaction scheduler to make itself known to
APPC/MVS. A transaction scheduler issues Identify after it has initialized itself and
is ready to receive or schedule requests from APPC/MVS. The transaction
scheduler must supply an XCF member token on Identify to allow APPC/MVS to
communicate with it. A transaction scheduler must identify itself to APPC/MVS
before its subordinate address spaces can connect to APPC/MVS.

Specifically, this service is used by a transaction scheduler to do the following:

1. Identify itself to APPC/MVS.

2. Provide its XCF member token to APPC/MVS so that it can be notified of
inbound allocate requests.

3. Optionally identify an information extract exit that may be invoked by
APPC/MVS when it needs information from the transaction scheduler.

4. Determine whether the APPCPMxx parmlib member correctly defines the LUs
for the transaction scheduler.

5. Specify initial status for LUs belonging to the transaction scheduler.

6. Identify an exit to convert a TP profile the first time it is referenced, and store
the converted profile for future references.

7. Optionally provide a resource manager name, if the transaction scheduler is to
process inbound, protected conversations (conversations with a synchronization
level of syncpt), and is designed to use privately managed contexts to represent
each of those inbound Allocate requests. For more information about schedulers
that process protected conversations, see the additional considerations listed in
“Chapter 2. General Transaction Scheduler Function: From Start-up to
Termination” on page 2-1.

Environment

Authorization: Supervisor state or PSW key 0-7
Dispatchable unit mode: Task mode
Cross memory mode: PASN = HASN = SASN or

PASN ¬= HASN ¬= SASN

Disconnect

Chapter 4. APPC/MVS System Services Summary 4-23

AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

Scheduler_Name
Supplied parameter
v Type: Character String
v Char Set: 01134
v Length: 8 bytes

Specifies the name of the transaction scheduler. This field must match a
transaction scheduler name appearing in the LU definitions of an APPCPMxx
parmlib member. The value must be the same as the value of the
SCHED-keyword of one or more LUADD statements in APPCPMxx. The
transaction scheduler name will also be used for operator displays. If the
transaction scheduler runs only as a “single instance per system,” this value
should be a string that suggests the name of the component performing the
Identify (for example, “ASCH” is an abbreviation used to identify the APPC
transaction scheduler). If the transaction scheduler can run as “multiple copies
per system,” this value should be a string that identifies a particular copy of the
transaction scheduler (for example, subsystems may wish to use the subsystem
name that appears in the IEFSSNxx parmlib member). Once a transaction
scheduler has successfully been identified, no other Identify call using the same
Scheduler_Name will be accepted unless a corresponding Unidentify statement
is issued.

Scheduler_Extract_Exit_Addr
Supplied parameter
v Type: Address
v Char set: N/A
v Length: 32 bits

Specifies the address of the transaction scheduler’s information extract exit.
This is an optional exit and may be left zero. If specified, this exit must reside in
the common-area of storage. See “Extract Exit” on page 5-6 for information
about coding a transaction scheduler extract exit.

CALL ATBIDN4 (Scheduler_name,
Scheduler_extract_exit_addr,
Scheduler_extract_user_field,
Scheduler_member_token,
TP_profile_processing,
LU_initial_status,
Scheduler_TP_profile_exit,
Scheduler_TP_profile_exit_data,
Resource_Manager_Name,
Return_code
);

Figure 4-10. ATBIDN4 - Identify

Identify

4-24 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Scheduler_Extract_User_Field
Supplied parameter
v Type: Character string
v Char set: No restriction
v Length: 8 bytes

Specifies a user-defined field or token passed to the transaction scheduler’s
information extract exit.

Scheduler_Member_Token
Supplied parameter
v Type: Character string
v Char set: No restriction
v Length: 8 bytes

Specifies an XCF member token. The member token represents a member of
the XCF group that is joined when the Join_Sysappc_Group service is invoked.
Messages are sent to this member to report when the transaction scheduler’s
LU name is activated or deactivated. Messages are also sent to report the
arrival of inbound allocate requests. APPC/MVS does not check the validity of
this member token. If a transaction scheduler passes an unknown member
token, then the transaction scheduler will not receive notification of the arrival of
inbound allocate requests.

TP_Profile_Processing
Supplied parameter
v Type: Integer
v Char set: N/A
v Length: 32 bits

Specifies the TP_Profile processing characteristics to use for this transaction
scheduler.

Valid values for this parameter are:

Value Meaning

0 Required

Specifies that APPC/MVS should reject any inbound allocate
request that specifies a TP_Name for which a TP_Profile entry
does not exist. If a TP_Profile entry does not exist, the inbound
allocate request is rejected with TP_Not_Recognized (sense
code X'10086021').

1 Optional

Specifies that a TP_Profile entry is not required. APPC/MVS will
perform all validity and security checks and reject the request if
any of these checks fail. If a TP_Profile entry does not exist,
APPC/MVS will indicate this in the XCF message sent to the
transaction scheduler to notify it of the inbound allocate request.

LU_Initial_Status
Supplied parameter
v Type: Integer
v Char set: N/A
v Length: 32 bits

Identify

Chapter 4. APPC/MVS System Services Summary 4-25

Specifies the initial status of LUs controlled by this transaction scheduler. Any
additional LUs being added for this transaction scheduler after Identify will
initially be given this status, unless Control Halt_All or Resume_All is called to
set the status.

Valid values for this parameter are:

Value Meaning

0 Active

Specifies that APPC/MVS should activate the LU(s) controlled
by this transaction scheduler. The status of every LU controlled
by this transaction scheduler will initially be put into Active state.

1 Outbound_Only

Specifies that APPC/MVS should temporarily halt processing of
allocate requests to the LU or LUs controlled by this transaction
scheduler. The transaction scheduler has to call Control
Resume for the LU to begin accepting inbound requests. The
status of every LU controlled by this transaction scheduler,
whether it is added to the system at initialization or by a
subsequent SET command, will initially be put into
Outbound_Only state, unless Control Resume_All is called to
set the status.

When the APPC address space terminates and restarts, the
transaction schedulers that have called Identify and Connect
before have to reidentify themselves and reconnect all their
subordinate address spaces. A transaction scheduler can use
this option to temporarily halt processing of inbound allocate
requests to the LU while it is in the process of reconnecting its
subordinate address spaces. It can issue a Control Resume
request to activate all the LUs when the reconnect process is
finished.

Scheduler_TP_profile_exit
Supplied parameter
v Type: Character string
v Char set: 01134
v Length: 8 bytes

Specifies the name of the exit that will receive control when the TP profile
requires conversion. To specify no exit, set this parameter to 8 blanks. If you
specify an exit, it must reside in LPA or in the LNKLST concatenation. (See the
PROGxx or LNKLSTxx parmlib member description in z/OS MVS Initialization
and Tuning Reference for more information about the LNKLST concatenation.)
For more information about this exit, see “TP Profile Conversion Exit” on
page 5-8.

Scheduler_TP_profile_exit_data
Supplied parameter
v Type: Character string
v Char set: No restriction
v Length: 8 bytes

Identify

4-26 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Specifies data to be passed to the TP profile conversion exit each time it is
invoked; for example, the address of a workarea for the exit to use. For more
information about how the exit receives this input data, see “TP Profile
Conversion Exit” on page 5-8.

Resource_Manager_Name
Supplied parameter
v Type: Character string
v Character Set: See the description of the Register_Resource_Manager

callable service in z/OS MVS Programming: Resource Recovery for more
information about the Resource_Manager_Name character set and naming
restrictions.

v Length: 32 bytes

Specifies the unique name that identifies the transaction scheduler as a
resource manager that is registered with the registration services.
Resource_Manager_Name is an optional parameter and may be set to zeroes
or blanks if either:

v The LUs for the transaction scheduler do not support protected
conversations, or

v The scheduler is not designed to use a privately managed context to
represent an inbound Allocate request.

If the transaction scheduler provides a Resource_Manager_Name, but a
privately managed context could not be created to represent subsequent
inbound Allocate requests, APPC/MVS rejects the inbound Allocate request, and
the allocator of the conversation will receive a TP_Not_Available_Retry error
return code on the next conversation call that allows a TP_Not_Available_Retry
return code to be presented.

For more information about schedulers that process protected conversations,
see the additional considerations listed in “Chapter 2. General Transaction
Scheduler Function: From Start-up to Termination” on page 2-1.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Identify might return one of the following decimal values in the return code
parameter:

Decimal Meaning

0 The Identify request was accepted. The LUs are activated
asynchronously.

4 The Identify request was accepted. No base LU name is
present. The APPCPMxx parmlib member or members specify
at least one LU name that is controlled by the transaction
scheduler, but no LU name is designated as the transaction
scheduler’s base LU. This situation might arise because the
APPCPMxx parmlib member was incorrectly coded, or because
the installation has deliberately chosen this configuration.

8 The Identify request was accepted. No LU names are
applicable. APPC/MVS found that the APPCPMxx parmlib

Identify

Chapter 4. APPC/MVS System Services Summary 4-27

member specifies no LU names that are controlled by the
transaction scheduler. This situation might arise because the
APPCPMxx parmlib member did not specify the correct
transaction scheduler name on the SCHED keyword of LUADD,
or it might arise because APPC/MVS tried to initialize for the
specified LUname and encountered a failure (for example,
APPC/MVS was unable to open the required TP profile file).

12 The Identify request was rejected. The calling transaction
scheduler address space is already identified using the same
scheduler name as the Scheduler_name parameter passed in.
This may occur if the caller issued Identify twice with the same
scheduler name.

14 The Identify request was rejected. The calling transaction
scheduler address space is already identified using a different
scheduler name from the Scheduler_name parameter passed
in. This may occur if the caller issued Identify twice with
different scheduler names.

16 The Identify request was rejected. The Scheduler_Name
parameter of Identify is already in use by some other address
space that previously issued Identify.

18 The Identify request was rejected. The
Scheduler_TP_profile_exit name that was passed could not be
loaded.

20 The Identify request was rejected. The Scheduler_Name
parameter value is not valid.

22 The Identify request was rejected. The
Scheduler_TP_profile_exit name is not valid.

24 The Identify request was rejected. The TP_Profile_Processing
parameter value is not valid.

26 The Identify request was rejected. The
Resource_Manager_Name value does not represent a
Resource Manager registered with RRS.

28 The Identify request was rejected. The LU_Initial_Status
parameter value is not valid.

32 The requested service is not supported in the caller’s
environment. For example, this return code is given if the caller
invokes any of the transaction scheduler services while holding
a lock.

38 The requested transaction scheduler service cannot be invoked
from a subordinate address space, or an address space that
has outstanding APPC/MVS conversations.

40 The requested transaction scheduler service cannot be invoked
from an APPC/MVS server address space.

44 APPC/MVS is not active.

48 APPC/MVS services failure.

Usage Notes

1. The transaction scheduler will be notified of an inbound allocate request only if
the request passes all validity and security checks. The userid specified in the

Identify

4-28 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

request must have RACF authority to access the TP profile entry (whether or
not it exists), and if the TP profile entry is found, it must be marked “activated”.

2. Timing restrictions on activities after Identify

The transaction scheduler might create subordinate address spaces and call
Connect before APPC/MVS reports that the base LU was successfully
initialized. However, the transaction scheduler must not dispatch any work that
might invoke an APPC/MVS Allocate service in these subordinate address
spaces, before one of the following occurs:

v The base LU is successfully initialized

v ATBSASA is called to prevent allocated conversations being associated with
the system default LU. For more information about this option, see
“Set_AS_Attributes” on page 4-33.

3. Factors delaying asynchronous completion of Identify

Some conditions might substantially delay the activation of an LU; for example,
VTAM may be stopped when the Identify is accepted.

An XCF message will be sent to the XCF-member representing the transaction
scheduler when each of its LUs is activated.

4. Factors causing asynchronous failure of Identify

Some conditions might cause an Identify to fail asynchronously after it has been
accepted, for example, VTAM parameters might be mismatched (there might not
be an APPL macro for the specified LUname), or APPC/MVS may be unable to
open the specified TP profile file.

An XCF message will be sent to the XCF member representing the transaction
scheduler when the attempt to initialize an LU fails asynchronously.

A transaction scheduler address space must issue Unidentify to undo its
Identify, even if all of its LUs fail asynchronously.

When LU initialization fails asynchronously, the system issues error messages
indicating the cause of the failure (for example, unable to open the TP profile
file). These messages will be issued to the same operator who receives
messages about failures of LUs after initialization is completed.

5. Use of XCF by a transaction scheduler

See “Join_Sysappc_Group” on page 4-30 for information regarding joining an
XCF group.

6. Asynchronous initialization of the base LU name

If Identify produces a return code of zero, then the transaction scheduler issuing
Identify will receive an LU activation or LU deactivation message, with LU_Flags
indicating that the message describes the base LU name. An LU deactivation
message will indicate asynchronous failure of the attempt to initialize the LU
name; an LU activation message will indicate successful initialization of the
LUname.

7. Operation without a base LU name

If Identify produces a return code of 4, then the transaction scheduler will
receive neither an LU activation nor an LU deactivation XCF message for the
base LU name, unless the operator issues a SET command which establishes a
base LU name for the transaction scheduler.

APPC/MVS does not issue any operator message indicating that the operator
should do this; the transaction scheduler can to issue its own operator message
asking the operator to perform such a SET command.

8. Operation with no LU names

Identify

Chapter 4. APPC/MVS System Services Summary 4-29

If Identify produces a return code of 8, then the transaction scheduler will
receive neither an LU activation nor an LU deactivation message for the base
LU name, unless the operator issues a SET command that establishes a base
LU name for the transaction scheduler.

In contrast to return code 4, APPC/MVS issues an operator message telling the
operator to perform such a SET command.

9. Use of privately managed contexts for protected conversations

A transaction scheduler should not change its resource manager name or
remain as an unregistered resource manager while it is identified to APPC/MVS.
Remaining unregistered, or changing the resource manager name without
notifying APPC/MVS, results in the inability to create a privately managed
context for inbound Allocate requests for LUs owned by the transaction
scheduler. To avoid this inability:

v Make sure the scheduler registers its resource manager name with
registration services.

v For a changed resource manager name, make sure the scheduler issues the
Unidentify service, followed by the Identify service, to notify APPC/MVS of the
name change.

Characteristics and Restrictions

1. Identify performs an automatic Connect of the home address space of the
calling transaction scheduler. (See “Connect” on page 4-15.)

2. APPC/MVS supports one Identify per address space. Because of this, each
transaction scheduler must be in its own address space.

3. The Identify service causes APPC/MVS to open one or more VTAM ACBs for
the transaction scheduler’s LUs. The ACBs are opened asynchronously if the
Identify is accepted. Similarly, the TP profile file or files are also opened
asynchronously. The asynchronous OPEN lets a transaction scheduler identify
itself when VTAM is functioning. APPC/MVS informs a transaction scheduler
that its LU is operational.

4. As soon as APPC/MVS accepts the Identify request, the scheduler’s
corresponding XCF message user routine and information extract exit may be
invoked at any time.

5. Transaction schedulers that call the Identify service should not have any
enabled unlocked task (EUT) functional recovery routines (FRRs) established.
For more information about EUT FRRs, see the information on recovery and
termination in z/OS MVS Programming: Authorized Assembler Services Guide.

6. An APPC/MVS server address space cannot use the Identify service. If an
address space calls the Identify service while it is registered for an allocate
queue, the system does not perform the Identify service function, and the caller
receives a return code of 40 (decimal). For information about APPC/MVS
servers, see z/OS MVS Programming: Writing Servers for APPC/MVS.

Join_Sysappc_Group
Use the Join_Sysappc_Group service to join the XCF group used by APPC/MVS.
Each transaction scheduler must join the APPC XCF group. Other system
applications can also join the APPC XCF group to be notified of APPC events.

APPC/MVS communicates with members of its XCF group by invoking their XCF
message user routines. APPC/MVS notifies all group members of general interest
events such as APPC initialization and termination. APPC/MVS also notifies
individual transaction schedulers when inbound allocate requests arrive for them. To

Identify

4-30 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

notify individual schedulers, APPC/MVS uses a member_token that the transaction
scheduler passes in on the Identify service. A transaction scheduler must call the
Join_Sysappc_Group service, which provides the member token, before calling the
Identify service. Unlike Identify and most other scheduler services, the
Join_Sysappc_Group service can be called when APPC/MVS is not active.

If you do not use the Join_Sysappc_Group service to join the APPC XCF group,
you must use APPC_GROUP_NAME as the group name with the IXCJOIN macro.
A different group name is chosen on each system; therefore, each of these groups
is “local to a system” and APPC/MVS can use the facilities of XCF regardless of
whether XCF can perform cross-system communication. Also, the service performs
IXCJOIN with the LASTING=NO option; thus, XCF “system-local mode” can be
tolerated.

Environment

Authorization: Supervisor state or PSW key 0-7
Dispatchable unit mode: Task mode
Cross memory mode: PASN = HASN = SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

XCFMSGIN_exit_address
Supplied parameter
v Type: Address
v Char Set: N/A
v Length: 32 bits

XCFMSGIN_exit_address specifies the address of the transaction scheduler’s
XCF message user routine. The routine takes control when a message
becomes available for this member from another member of the group. For
details about the requirements for and processing of the XCF message user
routine, see “XCF Message User Routine” on page 5-1.

XCFMSGIN_memdata
Supplied parameter
v Type: Character
v Char Set: No restriction
v Length: 8 bytes

CALL ATBJGP1 (XCFMSGIN_exit_address,
XCFMSGIN_memdata,
Member_token,
XCF_return_code,
XCF_reason_code,
Return_code
);

Figure 4-11. ATBJGP1 - Join_Sysappc_Group

Join_Sysappc_Group

Chapter 4. APPC/MVS System Services Summary 4-31

XCFMSGIN_memdata is an optional parameter that specifies an 8-byte member
data field. This field is provided to the message user routine for this member. If
you do not specify a value, XCF sets the member data field to binary zero. The
transaction scheduler can use this field to pass the address and ASID or ALET
of a particular control structure to the XCF message user routine.

Member_token
Returned parameter
v Type: Character
v Char Set: No restriction
v Length: 8 bytes

Member_token specifies the location where this service places the member
token that represents the caller of this service.

XCF_return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

The return code passed back from the XCF IXCJOIN macro, if XCF rejects the
Join request.

XCF_reason_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

The reason code passed back from the XCF IXCJOIN macro, if XCF rejects the
Join request.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Join_Sysappc_Group may return one of the following decimal values in the
return code parameter:

Decimal Meaning

0 Request successful.

8 Request unsuccessful - XCF failed or request denied by XCF.

40 The caller was not running in supervisor state or PSW key 0-7.

48 APPC/MVS services failure.

Characteristics and Restrictions

1. This service will execute successfully even if XCF is operating in XCF local
mode.

2. The caller must issue the IXCLEAVE macro to undo the effects of
Join_Sysappc_Group. IXCLEAVE processing is performed automatically if the
caller’s address space or task terminates.

Join_Sysappc_Group

4-32 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

3. The message buffer that is provided in the message user routine must be
accessible using the same protect key that is in effect at invocation of
Join_Sysappc_Group.

4. The task that calls this service might end abnormally if a privileged program
issues the XCF IXCTERM macro against this member. In that case, the task
terminates with system completion code 00C, reason code 4, and the task’s
recovery routine cannot retry. Transaction schedulers can handle this by
attaching a subtask that invokes Join_Sysappc_Group, and reattaching the
subtask if it terminates with completion code 00C, reason code 4.

5. A transaction scheduler may join XCF groups other than the APPC group joined
by this service.

6. The name of APPC’s XCF group might vary from system to system and might
change during re-IPL. If you need to know the XCF group name used by APPC
(to dedicate specific resources to it, for example), you can use the ATBAPPCA
mapping macro. The ATBAPPCA mapping macro is described in z/OS MVS
Data Areas, Vol 1 (ABEP-DALT).

7. Transaction schedulers that call the Join_Sysappc_Group service should not
have any enabled unlocked task (EUT) functional recovery routines (FRRs)
established. For more information about EUT FRRs, see the information on
providing recovery in z/OS MVS Programming: Authorized Assembler Services
Guide.

Set_AS_Attributes
The Set_AS_Attributes service lets a transaction scheduler set attributes for a
subordinate address space. In particular, this service can set an attribute to
designate whether conversations allocated from the specified address space are to
be associated to the system base LU. You can use this service to prevent an
inadvertent association in cases where the subordinate address space allocates a
conversation before the transaction scheduler connects the subordinate address
space to itself. Without Set_AS_Attributes in such cases, the conversation is
assigned to the system base LU, and when the transaction scheduler attempts to
connect the subordinate address space to itself later, if the conversation is still
outstanding, the connect fails.

For example, you could use Set_AS_Attributes for this purpose in the following
manner:

1. The transaction scheduler is active when APPC is not, so Identify and Connect
cannot be performed.

2. The transaction scheduler calls Set_AS_Attributes with the
Default_LU_Designation parameter set to 1 (to not associate conversations with
the system base LU).

3. APPC is started on the system.

4. A subordinate address space allocates a conversation before the transaction
scheduler identifies itself to APPC and connects the subordinate address space.

In the above scenario, if the transaction scheduler did not call Set_AS_Attributes
first, APPC/MVS would assign the subordinate address space to the system base
LU as soon as APPC/MVS received the outbound allocate request.

Instead, because the transaction scheduler does call Set_AS_Attributes first, APPC
rejects the allocate request. When the transaction scheduler is notified of APPC
initialization, the transaction scheduler can identify itself to APPC and connect the
subordinate address space to itself.

Join_Sysappc_Group

Chapter 4. APPC/MVS System Services Summary 4-33

The Set_AS_Attributes service can be called when APPC/MVS is not active.

Environment

Authorization: Supervisor state or PSW key 0-7
Dispatchable unit mode: Task mode
Cross memory mode: PASN = HASN = SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

ASCB_ptr
Supplied parameter
v Type: Pointer
v Char Set: N/A
v Length: 32 bits

Specifies the pointer to the address space control block (ASCB) that represents
the subordinate address space whose attributes are to be set.

Default_LU_Designation
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Specifies whether conversations allocated from the specified address space
should be associated with the system base LU. If conversations are not to be
associated with the system base LU, the address space cannot use APPC
services until it is explicitly connected using the ATBCONN service.

Valid values for this parameter are:

Value Meaning

0 Associate outbound conversations with the system base LU.
This value is the default.

1 Do not associate conversations with the system base LU.

By default, the conversations from any unconnected address
space will automatically be associated to the system base LU
unless this service is called.

CALL ATBSASA (ASCB_ptr,
Default_LU_Designation,
Return_Code
);

Figure 4-12. ATBSASA - Set_AS_Attributes

Set_AS_Attributes

4-34 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Set_AS_Attributes might return one of the following decimal values in the return
code parameter:

Decimal Meaning

0 Attributes were set successfully.

4 Request failed -- the ASCB_ptr was not valid.

8 Request failed -- the value for Default_LU_Designation was not
valid (must be 0 or 1).

40 The caller was not running in supervisor state or with PSW key
0-7.

48 APPC/MVS services failure.

Characteristics and Restrictions

Transaction schedulers that call the Set_AS_Attributes service should not have any
enabled unlocked task (EUT) functional recovery routines (FRRs) established. For
more information about EUT FRRs, see the information on providing recovery in
z/OS MVS Programming: Authorized Assembler Services Guide.

Unidentify
Unidentify can be used by a transaction scheduler to reverse the effects of the
Identify service. Unidentify terminates all APPC services for the transaction
scheduler and its subordinate address spaces. Unidentify causes APPC/MVS to
shut down the LU or LUs assigned to the transaction scheduler that issued
Unidentify. The caller does not have to wait for this to occur. Once the Unidentify
request is accepted, APPC/MVS returns control to the caller and assumes
responsibility for taking down the LU or LUs. After APPC/MVS returns control, a
transaction scheduler may invoke the IXCLEAVE macro to undo the effects of its
invocation of Join_Sysappc_Group.

Unidentify automatically disconnects address spaces currently connected to the
issuing transaction scheduler. New conversations (that is, inbound or outbound
Allocate requests) for the scheduler are rejected. The outcome of existing
conversations for the scheduler depends on the type of Unidentify call. (Existing
conversations are those for which one LU has successfully sent and its partner LU
has successfully received the Allocate request.)

After an Unidentify, the LU is placed in pending state to await another Identify
request. A transaction scheduler must issue Identify if it is to restart.

Calls to Unidentify must be issued from the address space that issued the Identify.

Environment

Authorization: Supervisor state or PSW key 0-7
Dispatchable unit mode: Task mode
Cross memory mode: PASN = HASN = SASN

Set_AS_Attributes

Chapter 4. APPC/MVS System Services Summary 4-35

AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

Unidentify_type
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 4 bytes

Specifies the type of Unidentify requested, which affects each LU that is
identified with this transaction scheduler. Valid values for this parameter are:

Value Meaning

0 Unidentify_Normal

Calls to ATBUID1 with an Unidentify_type of Normal (or calls to
ATBUNID) cause the ACB for each LU to be closed only after
all existing conversations are deallocated. Because work for the
LU is quiesced, a normal Unidentify is similar to LUDEL
processing.

1 Unidentify_Immediate

Calls to ATBUID1 with an Unidentify_type of Immediate cause
the ACB of each LU to be closed immediately. All existing
conversations fail when a TP issues the next APPC/MVS or
CPI-C service call.

Unidentify_Immediate can be used in situations requiring fast
termination, such as takeover by a backup scheduler.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Unidentify might return one of the following decimal values in the return code
parameter:

Decimal Meaning

0 Unidentify was accepted.

16 The Identify_type value passed on ATBUID1 was not valid.

CALL ATBUID1 (Unidentify_type,
Return_code

);

Figure 4-13. ATBUID1 - Unidentify

Unidentify

4-36 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

32 The requested service is not supported in the caller’s
environment. For example, this return code will be given if the
caller invokes any of the transaction scheduler services while
holding a lock.

34 The requested transaction scheduler service must be invoked
from a transaction scheduler address space.

44 APPC/MVS is not active.

48 APPC/MVS services failure.

Characteristics and Restrictions

Transaction schedulers that call the Unidentify service should not have any enabled
unlocked task (EUT) functional recovery routines (FRRs) established. For more
information about EUT FRRs, see the information on providing recovery in z/OS
MVS Programming: Authorized Assembler Services Guide.

Unidentify

Chapter 4. APPC/MVS System Services Summary 4-37

Unidentify

4-38 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Chapter 5. Transaction Scheduler User Exits

Transaction schedulers need to provide the following user exit routines to perform
certain functions.

v XCF message user routine

Each transaction scheduler must provide an XCF message user routine to obtain
information about general APPC/MVS events and to receive inbound allocate
requests that are directed to the scheduler.

v Extract exit

Transaction schedulers must supply an extract exit routine if they:

– Call the ATBEXAI service to extract information about their scheduling

– Run more than one transaction program in their address space
simultaneously, and one of the TPs issues an Allocate, Get_TP_Properties, or
Get_Conversation request.

v TP profile conversion exit

Schedulers can provide an exit routine to convert a TP profile on its first
reference and store the converted form of the profile for future reference, thus
avoiding repeated conversion and potentially improving performance.

v TP profile syntax exit and message routine

Schedulers can provide an exit routine to check the syntax of scheduler-specific
information before it is added to the TP profile. An associated message routine
can issue messages about syntax errors to the SYSPRINT data set.

XCF Message User Routine
APPC/MVS invokes a transaction scheduler’s XCF message user routine to inform
the transaction scheduler of general events affecting APPC/MVS, and to pass to it
all inbound Allocate requests that are addressed to the transaction scheduler’s LU.
Depending on the message that APPC/MVS passes, the message user routine
might have to issue the XCF IXCMSGI macro to obtain additional information.

The transaction scheduler identifies its XCF message user routine to APPC/MVS on
the Join_Sysappc_Group service.

References

v See z/OS MVS Programming: Sysplex Services Guide for more information
about designing an XCF message user routine.

v See z/OS MVS Programming: Sysplex Services Reference for the coding
details for the IXCMSGI macro.

v See IXCYMEPL in z/OS MVS Data Areas, Vol 3 (IVT-RCWK) for complete
field names and lengths, offsets, and descriptions of the fields in the
message user routine parameter list, which is mapped by the IXCYMEPL
mapping macro.

v See ATBXCFMS in z/OS MVS Data Areas, Vol 1 (ABEP-DALT) for complete
field names and lengths, offsets, and descriptions of the fields in XCF
messages sent by APPC/MVS, which are mapped by the ATBXCFMS
mapping macro.

© Copyright IBM Corp. 1991, 2001 5-1

Environment
The XCF message user routine receives control in the following environment:

Authorization: Supervisor state and PSW key 0
Dispatchable unit mode: SRB mode
Cross memory mode: PASN = HASN = SASN. The primary address space equals

the primary address space of the transaction scheduler, and
can be swappable or nonswappable.

AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: The user routine does not hold any locks on entry.

Processing
All XCF messages sent by APPC/MVS contain a type code to indicate the type of
message being sent. The type code is the first four bytes of the 32-byte message
control area passed in the parameter list (mapped by IXCYMEPL) to the message
user routine. The user routine must examine the type code to determine whether it
is a general event message or an Allocate request message. The user routine
should be optimized to handle requests to allocate TPs, because these will be the
most common.

Note: Messages requesting the transaction scheduler to allocate a TP will not be
sent until APPC/MVS activates at least one of the transaction scheduler’s
LUs. However, because XCF messages might be delivered out of sequence,
the XCF message user routine might receive an Allocate TP request
message before it receives the message reporting that the LU is active. Also,
the message user routine is not single-threaded; several processors may
execute the user routine simultaneously, with each processor handling a
different message.

z/OS MVS Programming: Sysplex Services Guide contains general information
about designing and coding an XCF message user routine; you should be familiar
with that information before coding the message user routine for a transaction
scheduler. The rest of this section contains guidance that applies only to designing
a message user routine for use with a transaction scheduler for APPC/MVS.

Message Types
The contents of the 32-byte message control area (MEPLCNTL field) indicate that
the XCF message is one of the following types:
v APPC Initialization or Termination
v LU Activation or Deactivation
v Allocate TP request.

The ATBXCFMS mapping macro maps these APPC/MVS messages. The general
event message for APPC initialization/termination is small enough to be contained
in the 32-byte message control area. However, the LU activation/deactivation and
the Allocate TP request messages are each too large to fit in the 32-byte message
control area. Also, for the LU activation/deactivation message, additional information
is available if optional data was supplied for the transaction scheduler’s LU in the
USERVAR, ALTLU, and GRNAME keywords on the LUADD statement in the
APPCPMxx parmlib member. In these cases, the message user routine must issue
the XCF IXCMSGI macro to receive the rest of the message or the additional
information.

XCF Message User Routine

5-2 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

When you design the message user routine to issue the IXCMSGI macro, provide
the message token value in the MEPLMTOK field of the parameter list. Also provide
a buffer to contain the data returned by IXCMSGI; the storage key for the buffer
must match the PSW key of the caller of Join_Sysappc_Group.

You may receive data in a single or in multiple buffers. See z/OS MVS
Programming: Sysplex Services Guide for information about designing a message
user routine to use single or multiple buffers without encountering errors.

Programming Notes for LU Activation/Deactivation Messages
For LU activation/deactivation messages:

v In the XCF 32-byte control area, a flag indicates whether the LU is capable of
handling outbound Allocate requests that use a network-qualified name to identify
the partner LU.

v In the IXGMSGI buffer:

– If the LU is a member of a VTAM generic resource group, a field contains the
generic resource name associated with the LU.

– Optional USERVAR data might indicate that a transaction scheduler has an
alias name defined for its local LU. Depending on the release of VTAM your
installation is using, one of the following results:

- With VTAM 4.3 or earlier, conversation allocations from that LU will fail if
the partner LU name on the Allocate request is the USERVAR alias of the
local LU name.

- With VTAM 4.4 or later, conversation allocations from that LU will be
accepted if the partner LU name on the Allocate request is the USERVAR
alias of the local LU name.

Programming Notes for Allocate TP Request Messages
If the message user routine issues IXCMSGI for more data, but the IXCMSGI
macro fails, the message user routine should call the Cleanup_TP service to clean
up any outstanding APPC/MVS resources, supplying the TP_ID that was passed to
the message user routine in the 32-byte control area.

If the IXCMSGI macro successfully returns to the message user routine, the buffer
contains the Allocate TP request message, which includes such data as:

TP_ID
A token that uniquely identifies a transaction to MVS. Transaction schedulers
use it to inform APPC/MVS:

v Where the transaction executes (through the Associate service)

v When the transaction terminates normally or abnormally (through the
Cleanup_TP service).

PROFILE
The TP profile entry contents, if a profile was available. The profile can be
mapped by the ATBDFTP mapping macro, which is in z/OS MVS Data Areas,
Vol 1 (ABEP-DALT); the format and content of the TP_Profile is
transaction-scheduler dependent.

CONV_CORR
The conversation correlator associated with this TP. The conversation correlator,
which is specified in the FMH-5 that contains the input for the allocate request,
associates that request with a response from the transaction scheduler. See
z/OS MVS Programming: Writing Transaction Programs for APPC/MVS for more
information about how partner TPs and transaction schedulers can use a
conversation correlator.

XCF Message User Routine

Chapter 5. Transaction Scheduler User Exits 5-3

CONV_SYNC_LEVEL
The synchronization level of the conversation associated with this TP. The
synchronization level is one of the following:

Value Meaning

0 None

1 Confirm

2 Syncpt

LUWID
The logical unit of work ID is used to identify the most recent sync point, or for
accounting purposes.

CONTEXT_TOKEN
A token that identifies the context representing a transaction program’s unit of
work. This field is meaningful only for protected conversations.

SECTOKN
A token that identifies the security environment created for the user by RACF. If
your installation uses RACF, the alternate transaction scheduler can use this
token to create a security environment in the program’s execution address
space. When recalling the RACF ACEE associated with the security token, for
performance reasons, code STAT=NO on the RACROUTE macro.

ENVR
A RACF object that the transaction scheduler can use quickly recreate a
security environment in the program’s execution address space.

For more information about the RACF Security_Token and ENVR_Object, see z/OS
SecureWay Security Server External Security Interface (RACROUTE) Macro
Reference.

Programming Considerations
v The message user routine can reside either in the private storage of the address

space from which the Join_Sysappc_Group service is invoked, or in common
storage.

v The message user routine should return to its caller as soon as possible,
because system resources are held until the message user routine gives up
control.

v To avoid performance degradation in the XCF signalling service, and in the
system as a whole, do not issue the SUSPEND macro within the message user
routine.

Entry Specifications
XCF passes information to the message user routine in registers and in a
parameter list.

Registers at Entry
On entry to the message user routine, the registers contain the following
information:

Register Contents

GPR 0 Does not contain any information for use by the message user
routine.

GPR 1 Address of the message user routine parameter list.

XCF Message User Routine

5-4 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Register Contents

GPRs 2 - 12 Do not contain any information for use by the message user
routine.

GPR 13 Address of a standard save area. (The message user routine does
not have to save and restore XCF’s registers in this save area. The
message user routine can use this save area to save its own
registers when it uses services that might overwrite the contents of
registers.)

GPR 14 Return address

GPR 15 Entry point address of message user routine.

ARs 0 - 15 Do not contain any information for use by the message user
routine.

Parameter List Contents
The parameter list that XCF passes to the message user routine is mapped by the
IXCYMEPL mapping macro and is pointed to by GPR 1. The parameter list is
addressable from the primary address space in which the message user routine
runs, and includes the following information:

v A message token (MEPLMTOK) for the message user routine to use when
issuing the IXCMSGI macro.

v The member data value (MEPLMDAT) provided on return from the
Join_Sysappc_Group service (XCFMSGIN_memdata parameter).

v The length of the message (MEPLMLEN).

v The message control area (MEPLCNTL), which contains the message
information from APPC/MVS. The message user routine must look at this 32-byte
area to determine the type and contents of the APPC/MVS message.

Figure 5-1 illustrates how APPC/MVS messages are mapped.

Return Specifications
On return, the message user routine does not have to set any return codes or place
any information in the GPRs. The message user routine must return control through
a BR 14 or a BSM 0,14.

GPR 1 XCF Message User Routine
Parameter List
mapped by IXCYMEPL

APPC/MVS Message
mapped by ATBXCFMS

MEPLCNTL field
of IXCYMEPL

Message_Type

Pointer

Figure 5-1. How APPC/MVS Messages are Mapped

XCF Message User Routine

Chapter 5. Transaction Scheduler User Exits 5-5

Extract Exit
The transaction scheduler extract exit is an optional exit invoked by APPC/MVS to
perform one of the following two functions:

v Provide information requested by a call to the Extract_Information service
(ATBEXAI). When a transaction program calls ATBEXAI for information about
how it was scheduled, the appropriate transaction scheduler extract exit is driven.
The output from this exit is defined by the transaction scheduler. If the exit is not
supplied by the transaction scheduler, the transaction program receives a return
code indicating that no information was returned.

v The extract exit is also invoked when APPC/MVS needs to determine which
transaction program is requesting APPC services. The extract exit is invoked for
this reason only when the request is coming from an address space that has
more than one TP_ID associated with it, (namely, a transaction scheduler
address space). The extract exit is driven to allow the transaction scheduler to
specify a TP_ID. It is used when a transaction program in the transaction
scheduler address space, or when the transaction scheduler issues one of the
following service calls:
– Allocate (unless a TP_ID is specified)
– Get_TP_Properties
– Get_Conversation

The exit is invoked only when there are two or more TPs associated with the
address space.

The extract exit for a transaction scheduler is established when the transaction
scheduler invokes the Identify service. If the transaction scheduler does not
supply this exit, requests from the transaction scheduler address space for the
above service calls are rejected when more than one TP_ID is associated with
the address space. If any of the above service calls are issued from the
scheduler address space in SRB mode, the exit will need a mechanism to
determine the TP_ID when a TCB is not available.

Environment
The transaction scheduler extract exit is given control on the same dispatchable unit
that invoked the particular service: Allocate, Get_TP_Properties, Get_Conversation,
or Extract_Information. Note that these services support SRB mode callers.
Therefore, if the service is invoked from the transaction scheduler address space in
SRB mode, the exit is driven in SRB mode as well, and is restricted in the services
that it can issue. For example, the exit cannot issue SVCs, nor issue a WAIT or
SUSPEND macro, because the exit might be invoked on the synchronous path of
an asynchronous service.

The exit receives control in the following environment:

Authorization: Supervisor state and PSW key 1
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN = APPC, HASN = caller’s HASN, SASN = caller’s

PASN
AMODE: 31-bit
ASC mode: Primary
Storage key: 1
Interrupt status: Enabled
Locks: The exit does not hold any locks on entry.

Extract Exit

5-6 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Exit Recovery
The caller of the exit routine should establish its own recovery environment before
calling the exit routine. The exit routine should also establish its own recovery
environment and, within its recovery, request a tailored dump. Before each exit
routine returns control to its caller, the exit routine must delete the recovery
environment it established and free the storage that it obtained. If the exit routine
does not establish its own recovery environment, the caller does the following when
the exit routine ends abnormally:
v Writes a logrec data set error record, and
v Writes a dump.

The dump and the logrec data set error record might not contain enough
information to diagnose the error.

For more information on providing recovery, see z/OS MVS Programming:
Authorized Assembler Services Guide.

Programming Requirements
v This exit must reside in common storage.

v To preserve the registers of the caller, the exit routine must follow the linkage
conventions described in “Linkage Conventions” in z/OS MVS Programming:
Assembler Services Guide.

Entry Specifications
APPC/MVS passes information to the extract exit in registers and in the scheduler
extract control block.

Registers on Entry
On entry to the extract exit, the registers contain the following information:

Register Contents

GPR 0 Does not contain any information for use by the exit.

GPR 1 The address of a one-word parameter list that contains the address
of the scheduler extract control block.

GPRs 2-15 Do not contain any information for use by the exit.

Scheduler Extract Control Block
The scheduler extract control block is in key 1 storage, so its contents are
immediately accessible by the exit. The scheduler exit control block contains a
service indicator that the exit can use to determine what processing needs to be
done:

Indicator Meaning

Get_Info The extract exit was invoked to supply information requested by a
caller of the Extract_Information service.

Get_TP_ID The extract exit was invoked because APPC/MVS could not
determine which TP_ID to use for a service call.

The scheduler extract exit control block is mapped by the ATBSECB mapping
macro; for detailed information about all of the fields in ATBSECB, see z/OS MVS
Data Areas, Vol 1 (ABEP-DALT).

Extract Exit

Chapter 5. Transaction Scheduler User Exits 5-7

Return Specifications
On return, the extract exit does not have to place any information in the GPRs.
However, depending on the service indicator, the extract exit must place values in
certain fields before returning to its caller:

v For a Get_Info call, the scheduler exit control block contains the address of a
temporary buffer in which the extract exit should return whatever data is required
by its published interface.

The extract exit also must set the Return_Code field to one of the values that
APPC/MVS returns for the Extract_Information service.

v For a Get_TP_ID call, the scheduler exit control block contains a TP_ID field in
which the extract exit should return the appropriate transaction program ID; that
is, the ID passed to the transaction scheduler on either the inbound Allocate TP
request message or the Define_Local_TP service.

The extract exit also must set the Return_Code field to zero (to indicate
successful processing) or any non-zero value (to indicate a failure).

TP Profile Conversion Exit
The transaction scheduler TP profile conversion exit is established when the
transaction scheduler invokes the Identify service, specifying the exit name. The TP
profile conversion exit allows a transaction scheduler to convert the contents of a
TP Profile when the first inbound allocate request arrives for the TP. The exit then
returns the converted form of the TP profile, which APPC/MVS saves and uses on
subsequent inbound requests.

Environment
This exit is invoked on each inbound request for a TP profile that has not been
previously converted and saved. The exit receives control in the following
environment:

Authorization: Supervisor state and PSW key 1
Dispatchable unit mode: Task mode
Cross memory mode: PASN = HASN = APPC
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Storage key: 1
TCB protect key: 1
Interrupt status: Enabled
Locks: The exit does not hold any locks on entry.
Subpool limitations: 1

The TP profile conversion exit receives control after the unconverted TP profile is
retrieved on an inbound request. The exit cannot invoke wait routines.

Exit Recovery
The caller of the exit routine should establish its own recovery environment before
calling the exit routine. The exit routine should also establish its own recovery
environment and, within its recovery, request a tailored dump. Before each exit
routine returns control to its caller, the exit routine must delete the recovery
environment it established and free all storage it obtained. If the exit routine does
not establish its own recovery environment, the caller does the following when the
exit routine ends abnormally:
v Writes a logrec data set error record, and

Extract Exit

5-8 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

v Writes a dump.

The dump and the logrec data set error record might not contain enough
information to diagnose the error.

For more information on providing recovery, see z/OS MVS Programming:
Authorized Assembler Services Guide.

Programming Requirements
To preserve the registers of the caller, the exit routine must follow the linkage
conventions described in “Linkage Conventions” in z/OS MVS Programming:
Assembler Services Guide.

Installation
The TP profile conversion exit must reside in LPA or in the LNKLST concatenation.
It must be a reentrant and reusable module. See the PROGxx or LNKLSTxx
parmlib member description in z/OS MVS Initialization and Tuning Reference for
more information about the LNKLST concatenation.

Entry Specifications
APPC/MVS passes information to the TP profile conversion exit in registers and in a
parameter list.

Registers on Entry
On entry to the extract exit, the registers contain the following information:

Register Contents

GPR 0 Does not contain any information for use by the exit.

GPR 1 The address of the parameter list described in “Parameter List
Contents”.

GPRs 2-12 Do not contain any information for use by the exit.

GPR 13 The address of a standard 18-word save area.

GPR 14 The return address.

GPR 15 The entry point address.

Parameter List Contents
The parameter list is pointed to by GPR 1, and is mapped by the ATBDFTPE
mapping macro. It contains such information as:

Parameters
Any data specified on the Scheduler_TP_profile_exit_data parameter of the
Identify call.

TP_profile_key_pointer
The address of the TP profile key. Mapped by ATBDFTP mapping macro.

TP_profile_pointer
The address of the unconverted TP profile as retrieved from DASD. Mapped by
ATBDFTP mapping macro.

Conv_data_pointer
The address that is to contain the converted TP profile. APPC/MVS obtains and
frees this storage.

TP Profile Conversion Exit

Chapter 5. Transaction Scheduler User Exits 5-9

Conv_data_length
The length that is available for saving a converted TP profile. The converted TP
profile must not exceed this length.

Return Specifications
Before returning control to its caller, the exit must place the length of the converted
TP profile in the Conv_data_length field, if the conversion was successful. Also, the
exit must ensure that the register contents are as follows:

Register Contents

GPRs 0-14 The exit must restore the contents to what they were when the exit
received control.

GPR 15 One of the following return code values:

Value Meaning

0 (0) Conversion was successful. APPC/MVS saves a
copy of the converted TP profile.

4 (4) Conversion was unsuccessful; the conversion exit
did not convert the profile. APPC/MVS saves a
copy of the unconverted TP profile.

12 (C) Conversion was unsuccessful; the conversion exit
encountered a syntax error. APPC/MVS does not
save a copy of the TP profile.

TP Profile Syntax Exit
This exit is provided to enable transaction schedulers to check the syntax of
scheduling information before it is added to the TP profile data set. The syntax exit,
which must be provided along with the scheduler and specified in the TP profile’s
TPSCHED_EXIT keyword, is invoked on TPADD or TPMODIFY commands by the
APPC/MVS administration utility or administration dialog. If no syntax exit is
specified, the transaction scheduler information in the TP profile is assumed to
apply to the APPC/MVS transaction scheduler, and the APPC/MVS administration
utility and JCL converter/interpreter check it for the syntax expected by that
scheduler.

If a syntax exit is specified and it finds errors in the transaction scheduler
information, the exit can invoke an IBM-supplied message routine (see “Profile
Syntax Message Routine” on page 5-12) to write messages to the SYSPRINT data
set and can prevent the profile from being added or modified. The administrator
who is creating or modifying the TP profile can then correct the error and try again.

Environment
The syntax exit receives control in the following environment:

Authorization: Supervisor state and PSW key 1
Dispatchable unit mode: Task mode
Cross memory mode: PASN = HASN = SASN
AMODE: 31-bit
RMODE: ANY
ASC mode: Primary
Storage key: 1

TP Profile Conversion Exit

5-10 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

TCB protect key: 1
Interrupt status: Enabled
Locks: The exit does not hold locks on entry.

Exit Recovery
The caller of the syntax exit should establish its own recovery environment before
calling the exit. The syntax exit should also establish its own recovery environment
and, within its recovery, request a tailored dump. Before the exit returns control to
its caller, the it must delete the recovery environment it established and free all
storage it obtained. If the syntax exit does not establish its own recovery
environment, the caller does the following when the exit ends abnormally:
v Writes a logrec data set error record, and
v Writes a dump.

The dump and the logrec data set error record might not contain enough
information to diagnose the error.

For more information on providing recovery, see z/OS MVS Programming:
Authorized Assembler Services Guide.

Programming Requirements
To preserve the registers of the caller, the syntax exit must follow the linkage
conventions described in “Linkage Conventions” in z/OS MVS Programming:
Assembler Services Guide.

Installation
The syntax exit must meet all the following conditions:
v Reside in LPA or in the LNKLST concatenation (for example, SYS1.LINKLIB)
v Be in an APF-authorized STEPLIB (see note below)
v Be link-edited with attributes reusable and reentrant.

Note: If the exit resides in the LPALST concatenation or in the LNKLST
concatenation, the system automatically considers the exit to be authorized.

See z/OS MVS Initialization and Tuning Reference for more information about the
LNKLST concatenation and APF-authorized libraries.

Entry Specifications
APPC/MVS passes information to the syntax exit in registers and in the scheduler
extract control block.

Registers on Entry
On entry to the syntax exit, the registers contain the following information:

Register Contents

GPR 0 Does not contain any information for use by the exit.

GPR 1 The address of the parameter list described in “Parameter List
Contents” on page 5-12.

GPRs 2-12 Do not contain any information for use by the exit.

GPR 13 The address of a standard 72-byte save area.

GPR 14 The return address.

TP Profile Syntax Exit

Chapter 5. Transaction Scheduler User Exits 5-11

Register Contents

GPR 15 The entry point address.

Parameter List Contents
Figure 5-2 illustrates the format and content of the parameter list for the TP profile
syntax exit.

Return Specifications
Before returning control to its caller, the syntax exit must ensure that the register
contents are as follows:

Register Contents

GPRs 0-14 The exit must restore the contents to what they were when the exit
received control.

GPR 15 One of the following decimal return code values:

Value Meaning

0 No syntax errors encountered; okay to add or
modify profile.

4 Syntax errors encountered; fix before adding or
modifying profile.

8 Processing error; could not check profile.

12 System error encountered.

Profile Syntax Message Routine
This message routine is provided by IBM to enable TP profile syntax exits to write
messages to the SYSPRINT data set about any errors that they find in the
scheduling information being specified on a TPADD or TPMODIFY command
through the APPC/MVS administration utility or dialog.

Environment
The profile syntax message routine receives control in the following environment:

Authorization: Supervisor state and PSW key 1
Dispatchable unit mode: Task mode
Cross memory mode: PASN = HASN = SASN

TP Profile Syntax Exit
Parameter List
(in key 1 storage)

GPR 1

Length of each record
(in a fullword)

Number of records
(in a fullword)

Address of contiguous
text of all records

Address of the Profile
Syntax Message Routine

Pointer

Pointer

Pointer

Pointer

Pointer

Figure 5-2. Parameter List of the TP Profile Syntax Exit

TP Profile Syntax Exit

5-12 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

AMODE: 31-bit
RMODE: ANY
ASC mode: Primary
Storage key: 1
TCB protect key: 1
Interrupt status: Enabled
Locks: The routine does not hold any locks on entry.

The TP profile syntax message routine runs under the APPC administration utility’s
task in the APPC administration utility’s address space.

Entry Specifications
The profile syntax message routine receives information through registers and a
parameter list.

Registers on Entry
On entry to the syntax message routine, the registers contain the following
information:

Register Contents

GPR 0 Does not contain any information for use by the exit.

GPR 1 The address of the parameter list described in “Parameter List
Contents”.

GPRs 2-12 Do not contain any information for use by the exit.

GPR 13 The address of a standard 72-byte save area.

GPR 14 The return address.

GPR 15 The entry-point address.

Parameter List Contents
Figure 5-3 shows the input parameters to the TP profile syntax message routine.

Return Specifications
Before returning control to its caller, the profile syntax message routine sets the
register contents as follows:

Register Contents

GPRs 0-14 The routine restores the contents to what they were when the
routine received control.

Profile Syntax Message Routine
Parameter List
(in key 1 storage)

GPR 1

Actual text of message

Length of message
(in a fullword)

Pointer

Pointer

Pointer

Figure 5-3. Input to the TP Profile Syntax Message Routine

Profile Syntax Message Routine

Chapter 5. Transaction Scheduler User Exits 5-13

Register Contents

GPR 15 One of the following decimal return code values:

Value Meaning

0 No syntax errors encountered.

4 Errors encountered; no messages were sent to
SYSPRINT.

Profile Syntax Message Routine

5-14 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Part 3. Appendixes

© Copyright IBM Corp. 1991, 2001

z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Appendix A. Character Sets

APPC/MVS makes use of character strings composed of characters from one of the
following character sets:

v Character set 01134, which is composed of the uppercase letters A through Z
and numerals 0-9.

v Character set Type A, which is composed of the uppercase letters A through Z,
numerals 0-9, national characters (@, $, #), and must begin with either an
alphabetic or a national character.

v Character set 00640, which is composed of the uppercase and lowercase letters
A through Z, numerals 0-9, and 19 special characters. Note that APPC/MVS does
not allow blanks in 00640 character strings.

These character sets, along with hexadecimal and graphic representations, are
provided in the following table:

Table A-1. Character Sets 01134, Type A, and 00640
Hex
Code

Graphic Description Character Set
01134 Type A 00640

40 Blank
4B . Period X
4C < Less than sign X
4D (Left parenthesis X
4E + Plus sign X
50 & Ampersand X
5B $ Dollar sign X (Note 1)
5C * Asterisk X (Note 2)
5D) Right parenthesis X
5E ; Semicolon X
60 – Dash X
61 / Slash X
6B , Comma X (Note 3)
6C % Percent sign X
6D _ Underscore X
6E > Greater than sign X
6F ? Question mark X
7A : Colon X
7B # Pound sign X (Note 1)
7C @ At sign X (Note 1)
7D ' Single quote X
7E = Equals sign X
7F " Double quote X
81 a Lowercase a X
82 b Lowercase b X
83 c Lowercase c X
84 d Lowercase d X
85 e Lowercase e X
86 f Lowercase f X
87 g Lowercase g X
88 h Lowercase h X
89 i Lowercase i X
91 j Lowercase j X
92 k Lowercase k X
93 l Lowercase l X

© Copyright IBM Corp. 1991, 2001 A-1

Table A-1. Character Sets 01134, Type A, and 00640 (continued)
Hex
Code

Graphic Description Character Set
01134 Type A 00640

94 m Lowercase m X
95 n Lowercase n X
96 o Lowercase o X
97 p Lowercase p X
98 q Lowercase q X
99 r Lowercase r X
A2 s Lowercase s X
A3 t Lowercase t X
A4 u Lowercase u X
A5 v Lowercase v X
A6 w Lowercase w X
A7 x Lowercase x X
A8 y Lowercase y X
A9 z Lowercase z X
C1 A Uppercase A X X X
C2 B Uppercase B X X X
C3 C Uppercase C X X X
C4 D Uppercase D X X X
C5 E Uppercase E X X X
C6 F Uppercase F X X X
C7 G Uppercase G X X X
C8 H Uppercase H X X X
C9 I Uppercase I X X X
D1 J Uppercase J X X X
D2 K Uppercase K X X X
D3 L Uppercase L X X X
D4 M Uppercase M X X X
D5 N Uppercase N X X X
D6 O Uppercase O X X X
D7 P Uppercase P X X X
D8 Q Uppercase Q X X X
D9 R Uppercase R X X X
E2 S Uppercase S X X X
E3 T Uppercase T X X X
E4 U Uppercase U X X X
E5 V Uppercase V X X X
E6 W Uppercase W X X X
E7 X Uppercase X X X X
E8 Y Uppercase Y X X X
E9 Z Uppercase Z X X X
F0 0 Zero X X X
F1 1 One X X X
F2 2 Two X X X
F3 3 Three X X X
F4 4 Four X X X
F5 5 Five X X X
F6 6 Six X X X
F7 7 Seven X X X
F8 8 Eight X X X
F9 9 Nine X X X

Character Sets

A-2 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Notes:

1. Avoid these characters because they display differently depending on the
national language code page in use.

2. Avoid using the asterisk in TP names because it causes a subset list request
when entered on panels of the APPC administration dialog and in DISPLAY
APPC commands.

3. Avoid using the comma in TP names because it acts as a parameter delimiter
when entered in DISPLAY APPC commands.

Character Sets

Appendix A. Character Sets A-3

Character Sets

A-4 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Appendix B. Previous Versions of APPC/MVS System
Services

ATBCMAS— Cleanup_Address_Space B-1
ATBCMTP— Cleanup_TP . B-4
ATBCTP1— Cleanup_TP. B-7
ATBIDEN— Identify . B-10
ATBIDN1— Identify . B-16
ATBMIGRP— Join_Sysappc_Group B-23
ATBUNID— Unidentify . B-25

This section describes previous APPC/MVS system service calls that have been
replaced by newer versions. The newer versions are documented in “Chapter 4.
APPC/MVS System Services Summary” on page 4-1. These previous versions
remain valid in later releases but contain no enhancements.

Callers of these system services must be in supervisor state or PSW key 0-7.
Callers that are not in supervisor state or PSW key 0-7 end with system completion
(abend) code 0C2, with the exception of ATBMIGRP, which provides a return code.

ATBCMAS— Cleanup_Address_Space

Note: The ATBCAS1 call is the preferred programming interface for this service.

Cleanup_Address_Space can be used to request APPC/MVS to clean up all
APPC/MVS resources for an address space. APPC/MVS cleans up all conversation
resources for all transaction programs that are associated with the address space at
the time the Cleanup_Address_Space was issued.

The Cleanup_Address_Space service can be invoked by a transaction scheduler
subordinate address space for a transaction program or job that terminates normally
or abnormally.

APPC/MVS deletes the TP_ID or TP_IDs from the system as a result of this call;
this cleanup process might occur asynchronously.

Environment

Authorization: Supervisor state or PSW key 0-7
Dispatchable unit mode: Task or SRB mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

© Copyright IBM Corp. 1991, 2001 B-1

Parameters

ASCB_ptr
Supplied parameter
v Type: Pointer
v Char Set: N/A
v Length: 32 bits

Specifies the pointer to the address space control block (ASCB) for the address
space to be cleaned up. All conversations for all transaction program instances
associated with this address space are to be deallocated. Invokers of this
service can get this value from the PSAAOLD field in the PSA for the current
address space or from the RMPLASCB field in the RMPL, resource manager
parameter list. If this parameter is set to zero, the home address space of the
program that issued the Cleanup_Address_Space call will be used as the
default address space.

Condition
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Specifies the deallocation condition that has occurred. This field is used to
generate the TYPE of deallocate and sense code that is issued by APPC/MVS
to the partner transaction program.

Valid values for this parameter are:

Value Meaning

0 Normal

Specifies that the transaction program completed normally,
even though it might have left active conversations. APPC/MVS
deallocates all conversations in a proper state for normal
deallocation with Deallocate Type(Sync_Level). All
conversations not in the proper state for a normal deallocation
are deallocated with Type(Abend_SVC).

1 System

Specifies that the transaction program terminated abnormally, or
the transaction program was terminated on behalf of some
action by the system (for example, the address space was
cancelled or forced). This condition is normally detected by the
transaction scheduler’s subordinate address space. All active
conversations are deallocated with Type(Abend_SVC).

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A

CALL ATBCMAS (ASCB_ptr,
Condition,
Return_code
);

Figure B-1. ATBCMAS - Cleanup_Address_Space Service

ATBCMAS— Cleanup_Address_Space

B-2 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

v Length: 32 bits

Cleanup_Address_Space might return one of the following decimal values in the
return code parameter:

Decimal Meaning

0 Request accepted. All conversations owned by the address
space are cleaned up asynchronously.

4 No conversations exist to be cleaned up.

8 The ASCB_ptr supplied does not point to a valid ASCB.

32 The requested service is not supported in the caller’s
environment. For example, this return code will be given if the
caller invokes any of the transaction scheduler services while
holding a lock.

44 APPC/MVS is not active.

48 APPC/MVS services failure.

Characteristics and Restrictions

1. Conversations with active APPC requests are not immediately deallocated.
Once the partner TP responds, APPC/MVS returns a deallocate condition and
deallocates the conversation locally.

2. When no APPC resources are to be cleaned up, Cleanup_Address_Space
might access fields located through the ASCB_Ptr parameter before it
establishes recovery (to improve performance). If an incorrect ASCB_ptr is
passed to ATBCMAS, the caller may abend with completion code X'0C4' when
ATBCMAS uses the passed value to get addressability to fields in the ASCB.

3. The Condition parameter defaults to zero (normal) if an incorrect condition is
specified.

4. Transaction schedulers that call the Cleanup_Address_Space service while
running in task mode should not have any enabled unlocked task (EUT)
functional recovery routines (FRRs) established. For more information about
EUT FRRs, see the information on providing recovery in z/OS MVS
Programming: Authorized Assembler Services Guide.

5. Regardless of the condition parameter value specified for this service,
APPC/MVS cleans up protected conversations differently, depending on whether
a syncpoint operation is in progress. When a syncpoint operation is in progress
for the current UR for the context with which the protected conversation is
associated, APPC/MVS does not immediately deallocate the conversation. The
syncpoint operation is allowed to complete. As part of the syncpoint processing,
the protected conversation might be deallocated, in which case no further
cleanup is required for that conversation.

If the conversation was not deallocated, however, cleanup processing proceeds
in the same manner as it does when a syncpoint operation is not in progress at
the time the Cleanup service is issued:

v The protected conversation is deallocated with TYPE(ABEND_SVC).

v The current UR is put into backout-required state.

v If the protected conversation is an inbound conversation, the logical unit of
work ID (LUWID) for the next UR is reset.

v The current UR and subsequent units of recovery for the context will not
include the protected conversation being cleaned up by this service.

ATBCMAS— Cleanup_Address_Space

Appendix B. Previous Versions of APPC/MVS System Services B-3

ATBCMTP— Cleanup_TP
Cleanup_TP can be used to request that APPC/MVS clean up all conversation
resources associated with a transaction program instance. Conversation resources
include network resources, control blocks, and buffers which are used by
APPC/MVS to manage the transaction program instance and its conversations.

The Cleanup_TP service can be invoked for the following reasons:

v The transaction program requested by an inbound allocate request is not
recognized or not available.

v The transaction scheduler cannot queue or schedule the transaction program at
this time.

v The requesting user ID is not authorized to use the transaction program.

v The transaction program has been attached and executed, and has completed
normally or abnormally.

The TP_ID is deleted from the system as a result of this call; this cleanup process
might occur asynchronously.

Environment

Authorization: Supervisor state or PSW key 0-7
Dispatchable unit mode: Task or SRB mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

TP_ID
Supplied parameter
v Type: Character string
v Char Set: No restriction
v Length: 8 bytes

Specifies the transaction program instance that is to be cleaned up. The
transaction program instance does not have to be associated with the caller’s
address space. All conversations owned by this transaction program instance
are to be deallocated.

Condition
Supplied parameter

CALL ATBCMTP (TP_ID,
Condition,
Return_Code
);

Figure B-2. ATBCMTP - Cleanup_TP

ATBCMTP— Cleanup_TP

B-4 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

v Type: Integer
v Char Set: N/A
v Length: 32 bits

Specifies the deallocation condition that has occurred. This field is used to
determine the type of deallocate and sense code that is issued by APPC/MVS
to the partner transaction program.

Valid values for this parameter are:

Value Meaning

0 Normal

Specifies that the transaction program completed normally,
even though it might have left active conversations. APPC/MVS
deallocates all conversations in a proper state for normal
deallocation with Deallocate Type(Sync_Level). All
conversations not in the proper state for a normal deallocation
are deallocated with Type(Abend_SVC).

1 System

Specifies that the transaction program terminated abnormally, or
the transaction program was terminated on behalf of some
action by the system (for example, the address space was
cancelled or forced). This condition is normally detected by the
transaction scheduler’s subordinate address space. All active
conversations are deallocated with Type(Abend_SVC).

2 TP_Not_Available_No_Retry

Specifies that the transaction scheduler is not able to schedule
the transaction because of a condition that is not temporary.
The partner should not attempt to retry the request. APPC/MVS
deallocates the conversation with a sense code of X'084C0000'.

3 TP_Not_Available_Retry

Specifies that the transaction scheduler is not able to schedule
the transaction because of a condition that might be temporary.
The partner might attempt to retry the request. APPC/MVS
deallocates the conversation with a sense code of
X'084B6031'X.

4 TPN_Not_Recognized

Specifies that the transaction scheduler does not recognize the
TP_Name passed to it. APPC/MVS deallocates the
conversation with a sense code of X'10086021'.

5 Security_Not_Valid

Specifies that the transaction scheduler detected a security
violation. APPC/MVS deallocates the conversation with a sense
code of X'080F6051'.

6 Sync_Level_Not_Supported_Pgm

Specifies that the transaction program does not support the
level of synchronization requested by the sender. APPC/MVS
deallocates the conversation with a sense code of X'10086041'.

ATBCMTP— Cleanup_TP

Appendix B. Previous Versions of APPC/MVS System Services B-5

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Cleanup_TP might return one of the following decimal values in the return code
parameter:

Decimal Meaning

0 Request accepted. All conversations owned by the transaction
program instance will be cleaned up asynchronously.

4 No conversations exist to be cleaned up.

8 The TP_ID parameter specified a nonexistent transaction
program instance.

32 The requested service is not supported in the caller’s
environment. For example, this return code will be given if the
caller invokes any of the transaction scheduler services while
holding a lock.

44 APPC/MVS is not active.

48 APPC/MVS services failure.

Characteristics and Restrictions

1. Conversations with active APPC requests are not immediately deallocated.
Once the partner TP responds, APPC/MVS returns a deallocate condition and
deallocates the conversation locally.

2. The Condition parameter defaults to zero (normal) if the specified condition is
not valid.

3. If you call the Cleanup_TP service while a unit of work is waiting on an ECB as
a result of an asynchronous call, APPC/MVS does not post the ECB after
performing the Cleanup_TP operation (APPC/MVS considers all resources
associated with the TP “terminated”). The application’s recovery environment
must clean up the waiting ECB.

4. Transaction schedulers that call the Cleanup_TP service while running in task
mode should not have any enabled unlocked task (EUT) functional recovery
routines (FRRs) established. For more information about EUT FRRs, see the
information on providing recovery in z/OS MVS Programming: Authorized
Assembler Services Guide.

5. Regardless of the condition parameter value specified for this service,
APPC/MVS cleans up protected conversations differently, depending on whether
a syncpoint operation is in progress. When a syncpoint operation is in progress
for the current UR for the context with which the protected conversation is
associated, APPC/MVS does not immediately deallocate the conversation. The
syncpoint operation is allowed to complete. As part of the syncpoint processing,
the protected conversation might be deallocated, in which case no further
cleanup is required for that conversation.

If the conversation was not deallocated, however, cleanup processing proceeds
in the same manner as it does when a syncpoint operation is not in progress at
the time the Cleanup service is issued:

v The protected conversation is deallocated with TYPE(ABEND_SVC).

v The current UR is put into backout-required state.

ATBCMTP— Cleanup_TP

B-6 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

v If the protected conversation is an inbound conversation, the logical unit of
work ID (LUWID) for the next UR is reset.

v The current UR and subsequent units of recovery for the context will not
include the protected conversation being cleaned up by this service.

ATBCTP1— Cleanup_TP
Cleanup_TP can be used to request that APPC/MVS clean up all conversation
resources associated with a transaction program instance. Conversation resources
include network resources, control blocks, and buffers that are used by APPC/MVS
to manage the transaction program instance and its conversations.

The Cleanup_TP service might be invoked for the following reasons:

v The transaction program requested by an inbound allocate request is not
recognized or not available.

v The transaction scheduler cannot queue or schedule the transaction program at
this time.

v The requesting user ID is not authorized to use the transaction program

v The transaction program has been attached and executed, and has completed
normally or abnormally.

The TP_ID is deleted from the system as a result of this call; this cleanup process
may occur asynchronously.

Environment

Authorization: Supervisor state or PSW key 0-7
Dispatchable unit mode: Task or SRB mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

TP_ID
Supplied parameter
v Type: Character string
v Char Set: No restriction
v Length: 8 bytes

CALL ATBCTP1 (TP_ID,
Condition,
Notify_Type,
Return_Code
);

Figure B-3. ATBCTP1 - Cleanup_TP

ATBCMTP— Cleanup_TP

Appendix B. Previous Versions of APPC/MVS System Services B-7

Specifies the transaction program instance that is to be cleaned up. The
transaction program instance does not have to be associated with the caller’s
address space. All conversations owned by this transaction program instance
are to be deallocated.

Condition
Supplied parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Specifies the deallocation condition that has occurred. This field is used to
determine the type of deallocate and sense code that is issued by APPC/MVS
to the partner transaction program.

Valid values for this parameter are:

Value Meaning

0 Normal

Specifies that the transaction program completed normally,
even though it might have left active conversations. APPC/MVS
deallocates all conversations in a proper state for normal
deallocation with Deallocate Type(Sync_Level). All
conversations not in the proper state for a normal deallocation
are deallocated with Type(Abend_SVC).

1 System

Specifies that the transaction program terminated abnormally, or
the transaction program was terminated on behalf of some
action by the system (for example, the address space was
cancelled or forced). This condition is normally detected by
transaction scheduler’s subordinate address space. All active
conversations are deallocated with TYPE(ABEND_SVC).

2 TP_Not_Available_No_Retry

Specifies that the transaction scheduler is not able to schedule
the transaction because of a condition that is not temporary.
The partner should not attempt to retry the request. APPC/MVS
deallocates the conversation with a sense code of X'084C0000'.

3 TP_Not_Available_Retry

Specifies that the transaction scheduler is not able to schedule
the transaction because of a condition that might be temporary.
The partner can attempt to retry the request. APPC/MVS
deallocates the conversation with a sense code of
X'084B6031'X.

4 TPN_Not_Recognized

Specifies that the transaction scheduler does not recognize the
TP_Name passed to it. APPC/MVS deallocates the
conversation with a sense code of X'10086021'.

5 Security_Not_Valid

Specifies that the transaction scheduler detected a security
violation. APPC/MVS deallocates the conversation with a sense
code of X'080F6051'.

ATBCTP1— Cleanup_TP

B-8 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

6 Sync_Level_Not_Supported_Pgm

Specifies that the transaction program does not support the
level of synchronization requested by the sender. APPC/MVS
deallocates the conversation with a sense code of X'10086041'.

7 User_Not_Authorized_For_TP

Specifies that the user is not authorized to access the
transaction program. APPC/MVS deallocates the conversation
with a sense code of X'080F0983'.

Notify_type
Supplied parameter
v Type: Structure
v Char Set: N/A
v Length: 4-8 bytes

Specifies the type of processing and notification (synchronous or asynchronous)
requested for this service. Programs can request asynchronous processing,
which returns control to the program immediately and later notifies the program
by ECB when the service is complete. The possible types are:

v None

No notification is requested. The service is performed synchronously, and
control is returned to the caller when processing is complete. All returned
parameters are set on return to the caller. To specify no notification, set the
parameter value to a four-byte structure containing binary zeros.

v ECB

Programs can request asynchronous processing by specifying an ECB to be
posted when processing completes. To specify an ECB, set the parameter to
an eight-byte structure containing a fullword binary one (X'00000001')
followed by the address of a fullword area to be used as the ECB. The ECB
must reside in the home address space.

When you specify an ECB, control is returned before processing is complete,
with only the return code set. If the asynchronous request was accepted, the
return code is set to 0 to indicate that the service is being processed
asynchronously. Other returned parameters are filled in during asynchronous
processing, and the specified ECB is posted when all returned parameters
are set. The completion code field in the ECB contains the return code for
the service.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Cleanup_TP may return one of the following decimal values in the return code
parameter:

Decimal Meaning

0 Request accepted. All conversations owned by the transaction
program instance will be cleaned up asynchronously.

4 No conversations exist to be cleaned up.

8 The TP_ID parameter specified a nonexistent transaction
program instance.

ATBCTP1— Cleanup_TP

Appendix B. Previous Versions of APPC/MVS System Services B-9

12 The asynchronous request failed. Resubmit the request with a
Notify_Type of None or report the problem to IBM.

20 APPC/MVS was cancelled during an asynchronous request for
this service.

32 The requested service is not supported in the caller’s
environment. For example, this return code will be given if the
caller invokes any of the transaction scheduler services while
holding a lock.

44 APPC/MVS is not active.

48 APPC/MVS services failure.

Characteristics and Restrictions

1. Conversations with active APPC requests are not immediately deallocated.
Once the partner TP responds, APPC/MVS returns a deallocate condition and
deallocates the conversation locally.

2. The Condition parameter defaults to 0 (normal) if an invalid condition is
specified.

3. If you call the Cleanup_TP service while a unit of work is waiting on an ECB as
a result of an asynchronous call, APPC/MVS does not post the ECB after
performing the Cleanup_TP operation (APPC/MVS considers all resources
associated with the TP “terminated”). The application’s recovery environment
must clean up the waiting ECB.

4. Transaction schedulers that call the Cleanup_TP service while in task mode
should not have any enabled unlocked task (EUT) functional recovery routines
(FRRs) established. For more information about EUT FRRs, see the information
on providing recovery in z/OS MVS Programming: Authorized Assembler
Services Guide.

5. Regardless of the condition parameter value specified for this service,
APPC/MVS cleans up protected conversations differently, depending on whether
a syncpoint operation is in progress. When a syncpoint operation is in progress
for the current UR for the context with which the protected conversation is
associated, APPC/MVS does not immediately deallocate the conversation. The
syncpoint operation is allowed to complete. As part of the syncpoint processing,
the protected conversation might be deallocated, in which case no further
cleanup is required for that conversation.

If the conversation was not deallocated, however, cleanup processing proceeds
in the same manner as it does when a syncpoint operation is not in progress at
the time the Cleanup service is issued:

v The protected conversation is deallocated with TYPE(ABEND_SVC).

v The current UR is put into backout-required state.

v If the protected conversation is an inbound conversation, the logical unit of
work ID (LUWID) for the next UR is reset.

v The current UR and subsequent units of recovery for the context will not
include the protected conversation being cleaned up by this service.

ATBIDEN— Identify
The Identify service is used by a transaction scheduler to make itself known to
APPC/MVS. A transaction scheduler issues Identify after it has initialized itself and
is ready to receive or schedule requests from APPC/MVS. The transaction
scheduler must supply an XCF member token on Identify to allow APPC/MVS to

ATBCTP1— Cleanup_TP

B-10 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

communicate with it. A transaction scheduler must identify itself to APPC/MVS
before its subordinate address spaces can connect to APPC/MVS.

Specifically, this service is used by a transaction scheduler to do the following:

1. Identify itself to APPC/MVS.

2. Provide its XCF member token to APPC/MVS so that it can be notified of
inbound Allocate requests.

3. Optionally identify an “information extract exit” that can be invoked by
APPC/MVS when it needs information from the transaction scheduler.

4. Determine whether the APPCPMxx parmlib member correctly defines the LUs
for the transaction scheduler.

5. Specify initial status for LUs belonging to the transaction scheduler.

Environment

Authorization: Supervisor state or PSW key 0-7
Dispatchable unit mode: Task mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

Scheduler_Name
Supplied parameter
v Type: Character string
v Char Set: 01134
v Length: 8 bytes

Specifies the name of the transaction scheduler. This field must match a
transaction scheduler name appearing in the LU definitions of an APPCPMxx
parmlib member. The value must be the same as the value of the SCHED
keyword of one or more LUADD statements in APPCPMxx. The transaction
scheduler name will also be used for operator displays. If the transaction
scheduler runs only as a “single instance per system,” this value should be a
string which suggests the name of the component performing the Identify (for
example, “ASCH” is an abbreviation used to identify the APPC transaction
scheduler). If the transaction scheduler can run as “multiple copies per system,”

CALL ATBIDEN (Scheduler_name,
Scheduler_extract_exit_addr,
Scheduler_extract_user_field,
Scheduler_member_token,
TP_profile_processing,
LU_initial_status,
Return_code
);

Figure B-4. ATBIDEN - Identify

ATBIDEN— Identify

Appendix B. Previous Versions of APPC/MVS System Services B-11

this value should be a string which identifies a particular copy of the transaction
scheduler (for example, subsystems might wish to use the subsystem name
which appears in the IEFSSNxx parmlib member). Once a transaction scheduler
has successfully been identified, no other Identify call using the same
Scheduler_Name will be accepted unless a corresponding Unidentify statement
is issued.

Scheduler_Extract_Exit_Addr
Supplied parameter
v Type: Address
v Char set: N/A
v Length: 32 bits

Specifies the address of the transaction scheduler’s information extract exit.
This is an optional exit and can be left zero. See “Extract Exit” on page 5-6 for
information about coding a transaction scheduler extract exit.

Scheduler_Extract_User_Field
Supplied parameter
v Type: Character string
v Char set: No restriction
v Length: 8 bytes

Specifies a user defined field or token passed to the transaction scheduler’s
information extract exit.

Scheduler_Member_Token
Supplied parameter
v Type: Character string
v Char set: No restriction
v Length: 8 bytes

Specifies an XCF member token. The member token represents a member of
the XCF group that is joined when the Join_Sysappc_Group service is invoked.
Messages are sent to this member to report when the transaction scheduler’s
LU name is activated or deactivated. Messages are also sent to report the
arrival of inbound Allocate requests. APPC/MVS does not check the validity of
this member token. If a transaction scheduler passes an unknown member
token, then the transaction scheduler will not receive notification of the arrival of
inbound Allocate requests.

TP_Profile_Processing
Supplied parameter
v Type: Integer
v Char set: N/A
v Length: 32 bits

Specifies the TP_Profile processing characteristics to use for this transaction
scheduler.

Valid values for this parameter are:

Value Meaning

0 Required

Specifies that APPC/MVS should reject any inbound Allocate
request that specifies a TP_Name for which a TP_Profile entry

ATBIDEN— Identify

B-12 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

does not exist. If a TP_Profile entry does not exist, the inbound
Allocate request is rejected with TP_Not_Recognized (sense
code X'10086021').

1 Optional

Specifies that a TP_Profile entry is not required. APPC/MVS will
perform all validity and security checks, and will reject the
request if any of these checks fail. If a TP_Profile entry does
not exist, APPC/MVS will indicate this in the XCF message sent
to the transaction scheduler to notify it of the inbound Allocate
request.

LU_Initial_Status
Supplied parameter
v Type: Integer
v Char set: N/A
v Length: 32 bits

Specifies the initial status of LUs controlled by this transaction scheduler. Any
additional LUs being added for this transaction scheduler after Identify will
initially be given this status, unless Control Halt_All or Resume_All is called to
set the status.

Valid values for this parameter are:

Value Meaning

0 Active

Specifies that APPC/MVS should activate the LU or LUs
controlled by this transaction scheduler. The status of every LU
controlled by this transaction scheduler will initially be put into
Active state.

1 Outbound_Only

Specifies that APPC/MVS should temporarily halt processing of
Allocate requests to the LU or LUs controlled by this transaction
scheduler. The transaction scheduler has to call Control
Resume in order for the LU to begin accepting inbound
requests. The status of every LU controlled by this transaction
scheduler, whether it is added to the system at initialization or
by a subsequent SET command, will initially be put into
Outbound_Only state, unless Control Resume_All is called to
set the status.

When the APPC address space terminates and restarts, the
transaction schedulers that have done Identify and Connect
before have to reidentify themselves and reconnect all their
subordinate address spaces. A transaction scheduler can use
this option to temporarily halt processing of inbound Allocate
requests to the LU while it is in the process of reconnecting its
subordinate address spaces. It can issue a Control Resume
request to activate all the LUs when the reconnect process is
finished.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A

ATBIDEN— Identify

Appendix B. Previous Versions of APPC/MVS System Services B-13

v Length: 32 bits

Identify may return one of the following decimal values in the return code
parameter:

Decimal Meaning

0 The Identify request was accepted. The LUs are activated
asynchronously.

4 The Identify request was accepted. No base LU name is
present. The APPCPMxx parmlib member or members specify
at least one LU name that is controlled by the transaction
scheduler, but no LU name is designated as the transaction
scheduler’s base LU. This situation may arise because the
APPCPMxx parmlib member was incorrectly coded, or because
the installation has deliberately chosen this configuration.

8 The Identify request was accepted. No LU names are
applicable. APPC/MVS found that the APPCPMxx parmlib
member specifies no LU names that are controlled by the
transaction scheduler. This situation may arise because the
APPCPMxx parmlib member did not specify the correct
transaction scheduler name on the SCHED keyword of LUADD,
or it may arise because APPC/MVS tried to initialize for the
specified LU name and encountered a failure (for example,
APPC/MVS was unable to open the required TP profile file).

12 The Identify request was rejected. The calling transaction
scheduler address space is already identified using the same
scheduler name as the Scheduler_name parameter passed in.
This may occur if the caller issued Identify twice with the same
scheduler name.

14 The Identify request was rejected. The calling transaction
scheduler address space is already identified using a different
scheduler name from the Scheduler_name parameter passed
in. This may occur if the caller issued Identify twice with
different scheduler names.

16 The Identify request was rejected. The Scheduler_Name
parameter of Identify is already in use by some other address
space that previously issued Identify.

20 The Identify request was rejected. The Scheduler_Name
parameter value is not valid.

24 The Identify request was rejected. The TP_Profile_Processing
parameter value is not valid.

28 The Identify request was rejected. The LU_Initial_Status
parameter value is not valid.

32 The requested service is not supported in the caller’s
environment. For example, this return code is given if the caller
invokes any of the transaction scheduler services while holding
a lock.

38 The requested transaction scheduler service cannot be invoked
from a subordinate address space, or an address space that
has outstanding APPC/MVS conversations.

ATBIDEN— Identify

B-14 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

40 The requested transaction scheduler service cannot be invoked
from an APPC/MVS server address space.

44 APPC/MVS is not active.

48 APPC/MVS services failure.

Usage Notes

1. The transaction scheduler will be notified of an inbound Allocate request only if
the request passes all validity and security checks. The userid specified in the
request must have RACF authority to access the TP profile entry (whether or
not it exists) and if the TP profile entry is found it must be marked “activated”.

2. Timing restrictions on activities after Identify

The transaction scheduler may create subordinate address spaces and invoke
Connect before APPC/MVS reports that the base LU was successfully
initialized. However, the transaction scheduler must not dispatch any work that
might invoke an APPC/MVS Allocate service in these subordinate address
spaces, before one of the following occurs:

v The base LU is successfully initialized.

v ATBSASA is called to prevent Allocated conversations being associated with
the system default LU. For more information about this option, see
“Set_AS_Attributes” on page 4-33.

3. Factors delaying asynchronous completion of Identify

Some conditions may substantially delay the activation of an LU; for example,
VTAM may be stopped when the Identify is accepted.

An XCF message will be sent to the XCF-member representing the transaction
scheduler when each of its LUs is activated.

4. Factors causing asynchronous failure of Identify

Some conditions might cause an Identify to fail asynchronously after it has been
accepted; for example, VTAM parameters might be mismatched (there might not
be an APPL macro for the specified LU name), or APPC/MVS might not be able
to open the specified TP profile file.

An XCF message will be sent to the XCF-member representing the transaction
scheduler when the attempt to initialize an LU fails asynchronously.

A transaction scheduler address space must issue Unidentify to undo its Identify
even if all of its LUs fail asynchronously.

When LU initialization fails asynchronously, APPC/MVS will issue
error-messages indicating the cause of the failure (for example, unable to open
the TP profile file). These messages will be issued to the same operator who
receives messages about failures of LUs after initialization is completed.

5. Use of XCF by a transaction scheduler

See “ATBMIGRP— Join_Sysappc_Group” on page B-23 for information
regarding joining an XCF group.

6. Asynchronous initialization of the base LU name

If Identify produces a return code of zero, then the transaction scheduler issuing
Identify will receive an LU activation or LU deactivation message, with LU_Flags
indicating that the message describes the base LU name. An LU deactivation
message will indicate asynchronous failure of the attempt to initialize the LU
name; an LU activation message will indicate successful initialization of the LU
name.

7. Operation without a base LU name

ATBIDEN— Identify

Appendix B. Previous Versions of APPC/MVS System Services B-15

If Identify produces a return code of 4, then the transaction scheduler will
receive neither an LU activation nor an LU deactivation XCF message for the
base LU name, unless the operator issues a SET command that establishes a
base LU name for the transaction scheduler.

APPC/MVS does not issue any operator message indicating that the operator
should do this; the transaction scheduler might wish to issue its own operator
message asking the operator to perform such a SET command.

8. Operation with no LU names

If Identify produces a return code of 8, then the transaction scheduler will
receive neither an LU activation nor an LU deactivation message for the base
LU name, unless the operator issues a SET command that establishes a base
LU name for the transaction scheduler.

In this case, APPC/MVS issues an operator message telling the operator to
perform such a SET command.

Characteristics and Restrictions

1. Identify performs an automatic Connect of the home address space of the
calling transaction scheduler. (See “Connect” on page 4-15.)

2. APPC/MVS supports one Identify per address space. Because of this, each
transaction scheduler must be in its own address space.

3. The Identify service causes APPC/MVS to open a VTAM ACB or ACBs for the
transaction scheduler’s LUs. The ACB or ACBs are opened asynchronously if
the Identify is accepted. Similarly, the TP profile file or files are also opened
asynchronously. The asynchronous OPEN lets a transaction scheduler identify
itself when VTAM is functioning. APPC/MVS informs a transaction scheduler
that its LU is operational.

4. As soon as APPC/MVS accepts the Identify request, the scheduler’s
corresponding XCF message user routine and information extract exit can be
invoked at any time.

5. An APPC/MVS server address space cannot use the Identify service. If an
address space calls the Identify service while it is registered for an Allocate
queue, the system does not perform the Identify service function, and the caller
receives a return code of 40 (decimal). For information about APPC/MVS
servers, see z/OS MVS Programming: Writing Servers for APPC/MVS.

6. Transaction schedulers that call the Identify service should not have any
enabled unlocked task (EUT) functional recovery routines (FRRs) established.
For more information about EUT FRRs, see the information on providing
recovery in z/OS MVS Programming: Authorized Assembler Services Guide.

ATBIDN1— Identify
The Identify service is used by a transaction scheduler to make itself known to
APPC/MVS. A transaction scheduler issues Identify after it has initialized itself and
is ready to receive or schedule requests from APPC/MVS. The transaction
scheduler must supply an XCF member token on Identify to allow APPC/MVS to
communicate with it. A transaction scheduler must identify itself to APPC/MVS
before its subordinate address spaces can connect to APPC/MVS.

Specifically, this service is used by a transaction scheduler to do the following:

1. Identify itself to APPC/MVS.

2. Provide its XCF member token to APPC/MVS so that it can be notified of
inbound Allocate requests.

ATBIDEN— Identify

B-16 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

3. Optionally identify an information extract exit that may be invoked by
APPC/MVS when it needs information from the transaction scheduler.

4. Determine whether the APPCPMxx parmlib member correctly defines the LUs
for the transaction scheduler.

5. Specify initial status for LUs belonging to the transaction scheduler.

6. Identify an exit to convert a TP profile the first time it is referenced, and store
the converted profile for future references.

Environment

Authorization: Supervisor state or PSW key 0-7
Dispatchable unit mode: Task mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

Scheduler_Name
Supplied parameter
v Type: Character String
v Char Set: 01134
v Length: 8 bytes

Specifies the name of the transaction scheduler. This field must match a
transaction scheduler name appearing in the LU definitions of an APPCPMxx
parmlib member. The value must be the same as the value of the SCHED
keyword of one or more LUADD statements in APPCPMxx. The transaction
scheduler name will also be used for operator displays.

If the transaction scheduler runs only as a “single instance per system,” this
value should be a string that suggests the name of the component performing
the Identify (for example, “ASCH” is an abbreviation used to identify the APPC
transaction scheduler). If the transaction scheduler can run as “multiple copies
per system,” this value should be a string that identifies a particular copy of the
transaction scheduler (for example, subsystems may wish to use the subsystem
name that appears in the IEFSSNxx parmlib member).

CALL ATBIDN1 (Scheduler_name,
Scheduler_extract_exit_addr,
Scheduler_extract_user_field,
Scheduler_member_token,
TP_profile_processing,
LU_initial_status,
Scheduler_TP_profile_exit,
Scheduler_TP_profile_exit_data,
Return_codes
);

Figure B-5. ATBIDN1 - Identify

ATBIDN1— Identify

Appendix B. Previous Versions of APPC/MVS System Services B-17

Once a transaction scheduler has successfully been identified, no other Identify
call using the same Scheduler_Name will be accepted unless a corresponding
Unidentify statement is issued.

Scheduler_Extract_Exit_Addr
Supplied parameter
v Type: Address
v Char set: N/A
v Length: 32 bits

Specifies the address of the transaction scheduler’s information extract exit.
This is an optional exit and may be left zero. See “Extract Exit” on page 5-6 for
information about the requirements for and processing of a transaction
scheduler extract exit.

Scheduler_Extract_User_Field
Supplied parameter
v Type: Character string
v Char set: No restriction
v Length: 8 bytes

Specifies a user-defined field or token passed to the transaction scheduler’s
information extract exit.

Scheduler_Member_Token
Supplied parameter
v Type: Character string
v Char set: No restriction
v Length: 8 bytes

Specifies an XCF member token. The member token represents a member of
the XCF group that is joined when the Join_Sysappc_Group service is invoked.
Messages are sent to this member to report when the transaction scheduler’s
LU name is activated or deactivated. Messages are also sent to report the
arrival of inbound Allocate requests. APPC/MVS does not check the validity of
this member token. If a transaction scheduler passes an unknown member
token, then the transaction scheduler will not receive notification of the arrival of
inbound Allocate requests.

TP_Profile_Processing
Supplied parameter
v Type: Integer
v Char set: N/A
v Length: 32 bits

Specifies the TP_Profile processing characteristics to use for this transaction
scheduler.

Valid values for this parameter are:

Value Meaning

0 Required

Specifies that APPC/MVS should reject any inbound Allocate
request that specifies a TP_Name for which a TP_Profile entry
does not exist. If a TP_Profile entry does not exist, the inbound
Allocate request is rejected with TP_Not_Recognized (sense
code X'10086021').

ATBIDN1— Identify

B-18 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

1 Optional

Specifies that a TP_Profile entry is not required. APPC/MVS will
perform all validity and security checks and reject the request if
any of these checks fail. If a TP_Profile entry does not exist,
APPC/MVS will indicate this in the XCF message sent to the
transaction scheduler to notify it of the inbound Allocate
request.

LU_Initial_Status
Supplied parameter
v Type: Integer
v Char set: N/A
v Length: 32 bits

Specifies the initial status of LUs controlled by this transaction scheduler. Any
additional LUs being added for this transaction scheduler after Identify will
initially be given this status, unless Control Halt_All or Resume_All is called to
set the status.

Valid values for this parameter are:

Value Meaning

0 Active

Specifies that APPC/MVS should activate the LU(s) controlled
by this transaction scheduler. The status of every LU controlled
by this transaction scheduler will initially be put into Active state.

1 Outbound_Only

Specifies that APPC/MVS should temporarily halt processing of
Allocate requests to the LU or LUs controlled by this transaction
scheduler. For the LU to begin accepting inbound requests, the
transaction scheduler has to call the Control service for the
Resume_All_Input function. The status of every LU controlled
by this transaction scheduler, whether it is added to the system
at initialization or by a subsequent SET command, will initially
be put into Outbound_Only state, unless Control
Resume_All_Input is called to set the status.

When the APPC address space terminates and restarts, the
transaction schedulers that have called Identify and Connect
before have to reidentify themselves and reconnect all their
subordinate address spaces. A transaction scheduler can use
this option to temporarily halt processing of inbound Allocate
requests to the LU while it is in the process of reconnecting its
subordinate address spaces. It can issue a Control Resume
request to activate all the LUs when the reconnect process is
finished.

Scheduler_TP_profile_exit
Supplied parameter
v Type: Character string
v Char set: 01134
v Length: 8 bytes

ATBIDN1— Identify

Appendix B. Previous Versions of APPC/MVS System Services B-19

Specifies the name of the exit that will receive control when the TP profile
requires conversion. To specify no exit, set this parameter to 8 blanks. For more
information about the requirements for and processing of this exit, see “TP
Profile Conversion Exit” on page 5-8.

Scheduler_TP_profile_exit_data
Supplied parameter
v Type: Character string
v Char set: No restriction
v Length: 8 bytes

Specifies data to be passed to the TP profile conversion exit each time it is
invoked; for example, the address of a workarea for the exit to use. For more
information about how the exit receives this input data, see “TP Profile
Conversion Exit” on page 5-8.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Identify might return one of the following decimal values in the return code
parameter:

Decimal Meaning

0 The Identify request was accepted. The LUs are activated
asynchronously.

4 The Identify request was accepted. No base LU name is
present. The APPCPMxx parmlib member or members specify
at least one LU name that is controlled by the transaction
scheduler, but no LU name is designated as the transaction
scheduler’s base LU. This situation might arise because the
APPCPMxx parmlib member was incorrectly coded, or because
the installation has deliberately chosen this configuration.

8 The Identify request was accepted. No LU names are
applicable. APPC/MVS found that the APPCPMxx parmlib
member specifies no LU names that are controlled by the
transaction scheduler. This situation might arise because the
APPCPMxx parmlib member did not specify the correct
transaction scheduler name on the SCHED keyword of LUADD,
or it might arise because APPC/MVS tried to initialize for the
specified LU name and encountered a failure (for example,
APPC/MVS was unable to open the required TP profile file).

12 The Identify request was rejected. The calling transaction
scheduler address space is already identified using the same
scheduler name as the Scheduler_name parameter passed in.
This may occur if the caller issued Identify twice with the same
scheduler name.

14 The Identify request was rejected. The calling transaction
scheduler address space is already identified using a different
scheduler name from the Scheduler_name parameter passed
in. This may occur if the caller issued Identify twice with
different scheduler names.

ATBIDN1— Identify

B-20 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

16 The Identify request was rejected. The Scheduler_Name
parameter of Identify is already in use by some other address
space that previously issued Identify.

18 The Identify request was rejected. The
Scheduler_TP_profile_exit name that was passed could not be
loaded.

20 The Identify request was rejected. The Scheduler_Name
parameter value is not valid.

22 The Identify request was rejected. The
Scheduler_TP_profile_exit name is not valid.

24 The Identify request was rejected. The TP_Profile_Processing
parameter value is not valid.

28 The Identify request was rejected. The LU_Initial_Status
parameter value is not valid.

32 The requested service is not supported in the caller’s
environment. For example, this return code is given if the caller
invokes any of the transaction scheduler services while holding
a lock.

38 The requested transaction scheduler service cannot be invoked
from a subordinate address space, or an address space that
has outstanding APPC/MVS conversations.

40 The requested transaction scheduler service cannot be invoked
from an APPC/MVS server address space.

44 APPC/MVS is not active.

48 APPC/MVS services failure.

Usage Notes

1. The transaction scheduler will be notified of an inbound Allocate request only if
the request passes all validity and security checks. The userid specified in the
request must have RACF authority to access the TP profile entry (whether or
not it exists), and if the TP profile entry is found, it must be marked “activated”.

2. Timing restrictions on activities after Identify

The transaction scheduler might create subordinate address spaces and call
Connect before APPC/MVS reports that the base LU was successfully
initialized. However, the transaction scheduler must not dispatch any work that
might invoke an APPC/MVS Allocate service in these subordinate address
spaces, before one of the following occurs:

v The base LU is successfully initialized

v ATBSASA is called to prevent allocated conversations being associated with
the system default LU. For more information about this option, see
“Set_AS_Attributes” on page 4-33.

3. Factors delaying asynchronous completion of Identify

Some conditions might substantially delay the activation of an LU; for example,
VTAM may be stopped when the Identify is accepted.

An XCF message will be sent to the XCF-member representing the transaction
scheduler when each of its LUs is activated.

4. Factors causing asynchronous failure of Identify

ATBIDN1— Identify

Appendix B. Previous Versions of APPC/MVS System Services B-21

Some conditions might cause an Identify to fail asynchronously after it has been
accepted, for example, VTAM parameters might be mismatched (there might not
be an APPL macro for the specified LU name), or APPC/MVS may be unable to
open the specified TP profile file.

An XCF message will be sent to the XCF member representing the transaction
scheduler when the attempt to initialize an LU fails asynchronously.

A transaction scheduler address space must issue Unidentify to undo its
Identify, even if all of its LUs fail asynchronously.

When LU initialization fails asynchronously, the system issues error messages
indicating the cause of the failure (for example, unable to open the TP profile
file). These messages will be issued to the same operator who receives
messages about failures of LUs after initialization is completed.

5. Use of XCF by a transaction scheduler

See “Join_Sysappc_Group” on page 4-30 for information regarding joining an
XCF group.

6. Asynchronous initialization of the base LU name

If Identify produces a return code of zero, then the transaction scheduler issuing
Identify will receive an LU activation or LU deactivation message, with LU_Flags
indicating that the message describes the base LU name. An LU deactivation
message will indicate asynchronous failure of the attempt to initialize the LU
name; an LU activation message will indicate successful initialization of the LU
name.

7. Operation without a base LU name

If Identify produces a return code of 4, then the transaction scheduler will
receive neither an LU activation nor an LU deactivation XCF message for the
base LU name, unless the operator issues a SET command which establishes a
base LU name for the transaction scheduler.

APPC/MVS does not issue any operator message indicating that the operator
should do this; the transaction scheduler can issue its own operator message
asking the operator to perform such a SET command.

8. Operation with no LU names

If Identify produces a return code of 8, then the transaction scheduler will
receive neither an LU activation nor an LU deactivation message for the base
LU name, unless the operator issues a SET command that establishes a base
LU name for the transaction scheduler.

In this case, APPC/MVS issues an operator message telling the operator to
perform such a SET command.

Characteristics and Restrictions

1. Identify performs an automatic Connect of the home address space of the
calling transaction scheduler. (See “Connect” on page 4-15.)

2. APPC/MVS supports one Identify per address space. Because of this, each
transaction scheduler must be in its own address space.

3. The Identify service causes APPC/MVS to open one or more VTAM ACBs for
the transaction scheduler’s LUs. The ACBs are opened asynchronously if the
Identify is accepted. Similarly, the TP profile file or files are also opened
asynchronously. The asynchronous OPEN lets a transaction scheduler identify
itself when VTAM is functioning. APPC/MVS informs a transaction scheduler
that its LU is operational.

4. As soon as APPC/MVS accepts the Identify request, the scheduler’s
corresponding XCF message user routine and information extract exit may be
invoked at any time.

ATBIDN1— Identify

B-22 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

5. Transaction schedulers that call the Identify service should not have any
enabled unlocked task (EUT) functional recovery routines (FRRs) established.
For more information about EUT FRRs, see the information on providing
recovery in z/OS MVS Programming: Authorized Assembler Services Guide.

6. An APPC/MVS server address space cannot use the Identify service. If an
address space calls the Identify service while it is registered for an allocate
queue, the system does not perform the Identify service function, and the caller
receives a return code of 40 (decimal). For information about APPC/MVS
servers, see z/OS MVS Programming: Writing Servers for APPC/MVS.

ATBMIGRP— Join_Sysappc_Group

Note: The ATBJGP1 call is the preferred programming interface for this service.

Use ATBMIGRP to join the XCF group used by APPC/MVS. Each transaction
scheduler must join the APPC XCF group. Other system applications can also join
the APPC XCF group to be notified of APPC events.

APPC/MVS communicates with members of its XCF group by invoking their XCF
message user routines. The APPC/MVS notifies all group members of general
interest events such as APPC initialization and termination. APPC/MVS also notifies
individual transaction schedulers when inbound allocate requests arrive for them. To
notify individual schedulers, APPC/MVS uses a member_token that the transaction
scheduler passes in on the Identify service. A transaction scheduler must call the
Join_Sysappc_Group service, which provides the member token, before calling the
Identify service. Unlike Identify and most other scheduler services, the
Join_Sysappc_Group service can be called when the APPC/MVS is not active.

If you do not use the Join_Sysappc_Group service to join the APPC XCF group,
you must use APPC_GROUP_NAME as the group name with the IXCJOIN macro.
A different group name is chosen on each system; therefore, each such group is
“local to a system” and APPC/MVS can use the facilities of XCF regardless of
whether XCF can perform cross-system communication. Also, the service performs
IXCJOIN with the LASTING=NO option; thus, XCF “system-local mode” can be
tolerated.

Environment

Authorization: Supervisor state or PSW key 0-7
Dispatchable unit mode: Task mode
Cross memory mode: PASN = HASN = SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

ATBIDN1— Identify

Appendix B. Previous Versions of APPC/MVS System Services B-23

Parameters

XCFMSGIN_exit_address
Supplied parameter
v Type: Address
v Char Set: N/A
v Length: 32 bits

XCFMSGIN_exit_address specifies the address of the transaction scheduler’s
XCF message user routine. The routine takes control when a message
becomes available for this member from another member of the group. For
details about the message user routine, see “XCF Message User Routine” on
page 5-1.

XCFMSGIN_memdata
Supplied parameter
v Type: Character
v Char Set: No restriction
v Length: 8 bytes

XCFMSGIN_memdata is an optional parameter that specifies an 8 byte member
data field. This field is provided to the message user routine for this member. If
you do not specify a value, XCF sets the member data field to binary zero. The
transaction scheduler can use this field to pass the address and ASID or ALET
of a particular control structure to the XCF message user routine.

Member_token
Returned parameter
v Type: Character
v Char Set: No restriction
v Length: 8 bytes

Member_token specifies the location where this service places the member
token that represents the caller of this service.

XCF_return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

The return code passed back from the XCF IXCJOIN macro, if XCF rejects the
Join request.

XCF_reason_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

CALL ATBMIGRP (XCFMSGIN_exit_address,
XCFMSGIN_memdata,
Member_token,
XCF_return_code,
XCF_reason_code,
Return_code
);

Figure B-6. ATBMIGRP - Join_Sysappc_Group

ATBMIGRP— Join_Sysappc_Group

B-24 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

The reason code passed back from the XCF IXCJOIN macro, if XCF rejects the
Join request.

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Join_Sysappc_Group might return one of the following decimal values in the
return code parameter:

Decimal Meaning

0 Request successful.

8 Request unsuccessful - XCF failed or request denied by XCF.

40 The caller was not running in supervisor state or PSW key 0-7.

48 APPC/MVS services failure.

Characteristics and Restrictions

1. This service will execute successfully even if XCF is operating in XCF local
mode.

2. The caller must issue the IXCLEAVE macro to undo the effects of
Join_Sysappc_Group. IXCLEAVE processing is performed automatically if the
caller’s address space or task terminates.

3. The message buffer that is provided in the message user routine must be
accessible using the same protect key that is in effect at invocation of
Join_Sysappc_Group.

4. The task that calls this service might end abnormally if a privileged program
issues the XCF IXCTERM macro against this member. In that case, the task
terminates with system completion code 00C, reason code 4, and the task’s
recovery routine cannot retry. Transaction schedulers can handle this by
attaching a subtask that invokes Join_Sysappc_Group, and reattaching the
subtask if it terminates with completion code 00C, reason code 4.

5. A transaction scheduler can join XCF groups other than the APPC group joined
by this service.

6. The name of APPC’s XCF group might vary from system to system and might
change during re-IPL. If you need to know the XCF group name used by APPC,
for example, to dedicate specific resources to it, you can use the ATBAPPCA
mapping macro, which appears in z/OS MVS Data Areas, Vol 1 (ABEP-DALT).

7. Transaction schedulers that call the Join_Sysappc_Group service should not
have any enabled unlocked task (EUT) functional recovery routines (FRRs)
established. For more information about EUT FRRs, see the information on
providing recovery in z/OS MVS Programming: Authorized Assembler Services
Guide.

ATBUNID— Unidentify

Note: The ATBUID1 call is the preferred programming interface for this service.

Unidentify can be used by a transaction scheduler to reverse the effect of
invocation of the Identify service. Unidentify terminates all APPC services for the
specified transaction scheduler and its subordinate address spaces.

ATBMIGRP— Join_Sysappc_Group

Appendix B. Previous Versions of APPC/MVS System Services B-25

After performing Unidentify, a transaction scheduler can invoke the IXCLEAVE
macro to undo the effects of its invocation of Join_Sysappc_Group.

APPC/MVS asynchronously shuts down the LU or LUs assigned to the transaction
scheduler that called Unidentify. The calling program does not have to wait for this
to occur. Once the Unidentify request is accepted, APPC/MVS returns control to the
calling program and assumes responsibility for taking down the LU or LUs.

Shut down automatically disconnects address spaces currently connected to the
issuing transaction scheduler. Shutting down an LU also includes setting the
session limits to zero. Conversations that are currently running will run to
completion. Any outstanding transaction program allocate requests will not be
honored. Upon completion of all of the LU’s conversations, the ACB is closed. The
LU is then placed in pending state, to await another Identify request. A transaction
scheduler must issue Identify if it is to restart.

The Unidentify must be issued from the address space that issued the Identify.

Environment

Authorization: Supervisor state or PSW key 0-7
Dispatchable unit mode: Task mode
Cross memory mode: PASN = HASN = SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Format

Parameters

Return_code
Returned parameter
v Type: Integer
v Char Set: N/A
v Length: 32 bits

Unidentify might return one of the following decimal values in the return code
parameter:

Decimal Meaning

0 Unidentify was accepted.

32 The requested service is not supported in the caller’s
environment. For example, this return code will be given if the
caller invokes any of the transaction scheduler services while
holding a lock.

CALL ATBUNID (Return_Code
);

Figure B-7. ATBUNID - Unidentify

ATBUNID— Unidentify

B-26 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

34 The requested transaction scheduler service must be invoked
from a transaction scheduler address space.

44 APPC/MVS is not active.

48 APPC/MVS services failure.

Characteristics and Restrictions

Transaction schedulers that call the Unidentify service should not have any enabled
unlocked task (EUT) functional recovery routines (FRRs) established. For more
information about EUT FRRs, see the information on providing recovery in z/OS
MVS Programming: Authorized Assembler Services Guide.

ATBUNID— Unidentify

Appendix B. Previous Versions of APPC/MVS System Services B-27

ATBUNID— Unidentify

B-28 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Appendix C. Notices

This information was developed for products and services offered in the USA.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
USA

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1991, 2001 C-1

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Programming Interface Information
This book is intended to help the customer to write authorized transaction
schedulers for use with APPC/MVS. This book documents General-use
Programming Interface and Associated Guidance Information provided by z/OS.

General-use programming interfaces allow the customer to write programs that
obtain the services of z/OS.

Trademarks
The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

v IBM

v IBMLink

v MVS

v OS/2

v OS/390

v OS/400

v RACF

v Resource Link

v SecureWay

v VTAM

v z/OS

Other company, product and service names may be the trademarks or service
marks of others.

C-2 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Glossary

This glossary defines technical terms and
abbreviations used in APPC/MVS documentation.
If you do not find the term you are looking for,
refer to the index of the appropriate APPC/MVS
book or view the IBM Glossary of Computing
Terms, located on the Internet at:
http://www.ibm.com/ibm/terminology

This glossary includes terms and definitions from
American National Standard Dictionary for
Information Systems, ANSI X3.172-1990, copyright
1990 by the American National Standard (ANSI).
Copies may be purchased from the American
National St Institute, 11 West 42nd Street, New
York, New York 10036.

A
access method control block (ACB). A control block
that links an application program to an access method
such as VSAM or VTAM.

access method. A software component in a processor
for controlling the flow of information.

adjacent nodes. Nodes that are connected to a given
node by one or more links with no intervening nodes.

Advanced Program-to-Program Communication
(APPC). A set of inter-program communication
services that support cooperative transaction processing
in a SNA network. APPC is the implementation, on a
given system, of SNA’s logical unit type 6.2. See also
logical unit type 6.2 and APPC/MVS.

allocate queue. In APPC, a structure containing
elements that represent requests to allocate (start) a
conversation with an APPC/MVS server. APPC/MVS
queues allocate requests on a first-in, first-out (FIFO)
basis until they are selected (received) by an
APPC/MVS server.

allocate queue keep time. An APPC/MVS server can
specify a keep time for an allocate queue for which it is
registered. Keep time is the number of seconds
APPC/MVS maintains an allocate queue when there are
no servers for an allocate queue. For example, keep
time would take effect when the last server of an
allocate queue unregisters.

allocate queue token. When an APPC/MVS server
registers to serve inbound allocate requests, APPC/MVS
returns an allocate queue token to the server. This
token uniquely identifies the queue of allocate requests
(or allocate queue) to be served. On subsequent calls to
APPC/MVS services, the server uses the allocate queue

token to indicate the allocate queue upon which a
requested function is to be performed.

allocate request. In APPC, a request from a
transaction program to allocate (start) a conversation
with another transaction program. The request may be
inbound (arriving from the network for a local
transaction program) or outbound (going from a local
transaction program onto the network).

APPC. See Advanced Program-to-Program
Communication.

APPC component. The component of MVS that is
responsible for extending LU 6.2 and CPI
Communications services to applications running in any
MVS address space. Includes APPC conversation and
scheduling services.

APPC/MVS. The implementation of SNA’s LU 6.2 and
related communication services in the MVS base control
program.

APPC/MVS server. In APPC, an MVS application
program that uses the APPC/MVS Receive_Allocate
callable service to process work requests on behalf of
one or more requestor programs (client TPs). An
APPC/MVS server can serve multiple client TPs serially
or concurrently.

APPC/MVS transaction scheduler. A program
supplied by APPC/MVS that is responsible for
scheduling, initiating, and terminating MVS TPs in
response to inbound work requests.

APPC/VM. The implementation of APPC on a VM
system.

APPC/VTAM. The implementation of APPC on VTAM.

Application-to-application communication. A set of
inter-program communication services that support
cooperative transaction processing in an SNA network.
See also logical unit type LU 6.2.

application. A collection of software components, or
programs, used to perform specific types of
user-oriented work on a computer. Compare with
distributed application.

B
backout. The process of restoring data changed by an
application program to the state at its last sync point.
Synonymous with rollback and abort

base logical unit. In APPC/MVS, the default logical
unit for outbound work. When a transaction program
allocates a conversation but leaves the Local_LU_name

© Copyright IBM Corp. 1991, 2001 D-1

http://www.ibm.com/ibm/terminology

parameter blank, the system can use a base LU to
handle the conversation. A base LU can be associated
with a transaction scheduler, or it can be a NOSCHED
LU.

See also system base LU.

basic conversation. A type of conversation in which
programs exchange data records in an SNA-defined
format. This format is a stream of data containing 2-byte
length prefixes that specify the amount of data to follow
before the next prefix. Contrast with mapped
conversation.

bind. In SNA, a request to activate a session between
two logical units.

boundary function. A capability of a subarea node to
provide protocol support for attached peripheral nodes.

C
call. See communication call.

change number of sessions. This is a set of verbs
provided by SNA that allow an application to change the
(LU,mode) session limit, which controls the number of
LU-LU sessions per mode name that are available
between two LUs for allocation to conversations.

class of service. A designation of the path control
network characteristics, such as path security,
transmission priority, and bandwidth, that apply to a
particular session.

client. A functional unit that receives shared services
from a server.

client/server. The model of interaction in distributed
data processing in which a program at one site sends a
request to a program at another site and awaits a
response. The requesting program is called a client; the
answering program is called a server.

CNOS. See change number of sessions.

commit. (1) To end the current scope of recovery and
begin a new one. (2) To make all changes permanent
that were made to one or more database files since the
last commit or backout operation, and make the
changed records available to other users.

committed change. A database change that will not
be backed out during system failure. Changes made by
a logical unit of work are committed when the sync point
at the end of the logical unit of work is complete.

Common Programming Interface. Provides
languages, commands and calls that allow the
development of applications that are more easily
integrated and moved across multiple environments.

communication call. A conversation statement that
transaction programs can issue to communicate through
the LU 6.2 protocol boundary. The specific calls that a
transaction program can issue are determined by the
program’s current conversation state. See also verb.

communication controller node. A subarea node that
contains a network control program.

communications interface. A uniform set of calls
within the Common Programming Interface that different
systems use to request services. See also
communication call and verb.

configuration. The arrangement of a computer system
or network as defined by the nature, number, and chief
characteristics of its functional units.

contention loser. When the LUs at both ends of a
session request to allocate a conversation
simultaneously, the contention loser is the LU that must
request and receive permission from the session partner
LU to allocate the conversation. Contrast with
contention winner.

contention winner. When the LUs at both ends of a
session request to allocate a conversation
simultaneously, the contention winner is the LU that can
allocate the conversation without requesting permission
from the session partner LU. Contrast with contention
loser.

conversation. A logical connection between two
programs over an LU type 6.2 session that allows them
to communicate with each other while processing a
transaction. See also basic conversation and mapped
conversation.

conversation characteristics. The attributes of a
conversation that determine the functions and
capabilities of programs within the conversation.

conversation_ID. An 8-byte identifier, used in
Get_Conversation calls, that uniquely identifies a
conversation. It is returned from APPC/MVS on the
CMINIT, ATBALC2, ATBALLC, ATBGETC, and ATBRAL2
calls and is required as input on subsequent
APPC/MVS calls.

conversation partner. One of the two programs
involved in a conversation.

conversation state. The condition of a conversation
that reflects what the past action on that conversation
has been and that determines what the next set of
actions may be.

coupling services. In a sysplex, the functions of XCF
that transfer data and status among members of a
group residing on one or more MVS systems in the
sysplex.

CPI. See Common Programming Interface.

Glossary

D-2 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

cross-system coupling facility (XCF). XCF provides
the MVS coupling services that allow programs on MVS
systems in a multisystem environment to communicate
(send and receive data) with programs on MVS
systems.

D
database token. In APPC/MVS, a 1- through
8-character name used in a security definition to
represent a TP profile or side information file name.

data channel. A device that connects a processor and
main storage with I/O control units.

data link control protocol. Specifications for
interpreting control data and transmitting data across a
link.

directory services. Services for resolving user
identifications of network components to network routing
information.

domain. A system services control point (SSCP) and
the resources that it can control.

E
end user. The ultimate source or destination of data
flowing through an SNA network. An end user can be
an application program or a workstation operator.

event queue. Each APPC/MVS server can be
associated with an event queue. A server can request to
be notified of events related to an allocate queue for
which it is registered. When such an event occurs,
APPC/MVS places an element on the server’s event
queue. The server can determine which event occurred
by examining the element (through the Get_Event
service).

F
FMH-5. Functional Management Header 5 -- an SNA
data structure that APPC uses to pass requests to
allocate transaction program conversations between
logical units.

fully qualified name. Synonym for network-qualified
name.

G
generic resource name. A name that represents
multiple APPC/MVS logical units (LUs) that provide the
same function in order to handle session distribution
and balancing.

generic userid. In APPC/MVS, a userid, specified in
the TP profile, that provides the initial security

environment for a multi-trans TP. The generic userid
covers the TP’s initial processing until a successful
Get_Transaction call is made. The generic userid also
covers termination processing, and any processing
following a Return_Transaction call until a subsequent
successful Get_Transaction call.

H
half-duplex protocol. A communications protocol
where only one communications partner can send data
at a time.

host node. A subarea node that contains a system
services control point.

I
inbound request. A request arriving at a logical unit
(LU) from a partner transaction program. The LU must
establish the environment and start the local transaction
program that is to handle the request. See also allocate
request.

inbound transaction program. A transaction program
on MVS that is initiated and scheduled in response to
an inbound request from a partner transaction program.
Contrast with outbound transaction program.

J
JCL. See Job Control Language.

JECL. See Job Entry Control Language.

Job Control Language. A problem-oriented language
designed to express statements in a job that identify the
job or describe its requirements to an operating system.

Job Entry Control Language. A problem-oriented
language designed to express statements in a job that
describe its requirements to an operating system’s job
entry subsystem.

jobid. See job identifier.

job identifier. The job identifier is a unique value that
can be used to uniquely identify a JES job.

K
keep time. see allocate queue keep time

L
layer. A layer is a grouping of related functions that
are logically separate from other functions; the
implementation of the functions in one layer can be
changed without affecting functions in other layers.

Glossary

Glossary D-3

link. A link is a transmission medium and data link
control component that together transmit data between
adjacent nodes.

local transaction program. The program being
discussed within a particular context. Contrast with
partner transaction program.

logical unit. A port providing formatting, state
synchronization, and other high-level services through
which an end user communicates with another end user
over an SNA network.

logical unit of work. The processing a program
performs from one sync point to the next.

logical unit type 6.2. The SNA logical unit type that
supports general communication between programs in a
cooperative processing environment; the SNA logical
unit type on which CPI communications and APPC/MVS
TP conversation services are built.

logon mode. A logon mode contains the parameters
and protocols that determine a session’s characteristics.
Logon modes are defined in VTAM’s mode table in
SYS1.VTAMLIB.

LU. See logical unit.

LU=local. In APPC/MVS, a situation in which a pair of
communicating transaction programs are on the same
MVS system.

LU=own. In SNA terms, a situation in which a pair of
communicating transaction programs are defined to the
same logical unit (LU).

M
management services. In SNA, functions distributed
among network components to operate, manage, and
control the network.

mapped conversation. A type of conversation in
which programs exchange data records with arbitrary
data formats agreed upon by the applications
programmers. Mapped conversations use mapped verbs
that do not require the prefix information used in basic
verbs. Contrast with basic conversation.

mode name. A symbolic name for a set of session
characteristics. For LU 6.2, a mode name and a partner
LU name together define a session or a group of
parallel sessions having the same characteristics.

multi-trans. Multi-trans scheduling allows properly
designed TPs to remain active between conversations
and handle multiple inbound conversations in sequence,
without having to deallocate and reallocate resources.
Because they can be accessed by multiple users,
multi-trans TPs are responsible for the security of their
resources and conversations. Contrast with standard.

multi-trans shell. The outer level of a transaction
program with a TP_schedule_type of multi-trans, which
sets up an environment and accepts inbound
conversation requests in sequence by calling the
Get_Transaction (ATBGTRN) service. The shell may
also call the Return_Transaction (ATBRTRN) service to
restore its shell environment for other processing
between conversations. For more information, see
TP_Schedule_Type.

N
network addressable unit. A logical unit, physical
unit, or system services control point.

network-qualified name. A name that uniquely
identifies a specific resource (such as an LU) within a
specific network. It consists of a network identifier and a
resource name, each of which is a 1- to 8-byte symbol
string. Synonymous with fully qualified name.

node. An end point of a link, or a junction common to
two or more links in a network. Nodes can be
processors, controllers, or workstations. Nodes can vary
in routing and other functional capabilities.

NOSCHED logical unit (LU). In APPC/MVS, a logical
unit (LU) that is not associated with a transaction
scheduler. Such LUs do not require a transaction
scheduler to be started to be active. NOSCHED LUs
are used by outbound transaction programs and
APPC/MVS servers.

O
one-way-half duplex. The format of APPC
communications between two transaction programs.
One transaction program is in ‘send’ state and the other
is in ‘receive’ state.

outbound request. A request arriving at a logical unit
(LU) from a local transaction program. The LU must
place the request on the SNA network. See also
allocate request.

outbound transaction program. In APPC, a
transaction program that requests a conversation with a
partner (inbound) transaction program. The outbound
TP issues an allocate request to allocate (start) the
conversation. Contrast with inbound transaction
program.

P
pacing. A technique by which a receiving component
controls the rate of transmission by a sending
component to prevent overrun or congestion.

partner. See conversation partner.

Glossary

D-4 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

partner transaction program. The program at the
other end of a conversation with respect to the local
program. Contrast with local program.

peripheral node. A node that uses local addresses
and therefore is not affected by changes in network
addresses. A peripheral node requires boundary
function assistance from an adjacent subarea node.

persistent sessions. The option for VTAM persistent
sessions allows LU-LU sessions to remain active during
interruptions in APPC/MVS service and preserves
conversation requests until APPC/MVS service
resumes. The PSTIMER parameter in the APPCPMxx
parmlib member’s LUADD statement controls whether
sessions persist and for how long.

persistent verification. Persistent verification (PV) is
a way of reducing the number of password
transmissions, by eliminating the need to provide a
userid and password on each attach (allocate) during
multiple conversations between a user and a remote
LU. The user is verified during the sign-on process and
remains verified until the user has been signed-off the
remote LU.

physical unit. The component that manages and
monitors the resources of a node as requested by a
system services control point.

privilege. An identification that a product or installation
defines in order to differentiate SNA service transaction
programs from other programs, such as application
programs.

protected conversation. An LU 6.2 conversation that
has a synchronization level of syncpt, and that supports
two-phase commit protocols for resource recovery and
resynchronization protocols. Contrast with unprotected
conversation.

protected resource. (1) A resource defined to RACF
for the purpose of controlling access to the resource.
Some of the resources that can be protected by RACF
are DASD and tape data sets, DASD volumes, tape
volumes, terminals, and any other resources defined in
the class descriptor table. (2) A resource (for example, a
database) that can be modified only in accordance with
two-phase commit protocols.

protocol. The meaning of, and the sequencing rules
for, requests and responses used for managing a
network, transferring data, and synchronizing the states
of network components.

protocol boundary. A software connection between
nodes that provides program-to-program communication
through either a set of conversation verbs or high-level
language subroutine calls.

PU. See physical unit.

R
receive state. The condition of a conversation in
which a transaction program can receive data.

registered transaction program. A transaction
program that performs a specialized function on behalf
of an LU.

resource. Any facility of a computing system or
operating system required by a job or task, and
including main storage, input/output devices, the
processing unit, data sets, and control or processing
programs.

S
SDLC. See Synchronous Data Link Control.

SDSF. See System Display and Search Facility.

security information. For APPC/MVS, a userid,
password, and security profile name passed on an
allocate request from a transaction program to its
partner. The partner’s system can verify the information
and permit or deny the request accordingly.

security profile. For APPC/MVS, an optional
character string passed as security information on an
allocate request from a transaction program to its
partner. When the partner is on MVS with RACF
protection, the system treats the security profile as a
RACF groupid, and can verify that the requester has
access to that group.

send state. The condition of a conversation in which a
transaction program can send data or request resource
synchronization.

served transaction program (TP). In APPC/MVS, a
transaction program that is processed by an APPC/MVS
server, rather than by a partner TP that has been
scheduled by a transaction scheduler.

server. A functional unit that provides shared services
to workstations over a networks; for example, a file
server, a print server, a mail server. See also
APPC/MVS server.

session. A logical connection between two logical
units that can be activated, tailored to provide various
protocols, and deactivated as requested.

shell, multi-trans. See multi-trans shell.

shell, test. See test shell.

side information. A collection of system-defined
values for transaction programs whose partners call
them by symbolic destination names
(sym_dest_names). When a transaction program calls

Glossary

Glossary D-5

its partner by a sym_dest_name, APPC uses the
associated values to establish a conversation between
them.

SJF. See scheduler JCL facility.

SNA. See Systems Network Architecture

SNA service transaction program. An IBM-supplied
transaction program running in an LU that provides
utility services to application transaction programs or
that manages LUs.

SPI. See systems programming interface.

SSCP. See system services control point.

SSI. See subsystem interface.

standard. The standard TP_Schedule_Type for
APPC/MVS. TPs that are scheduled as standard are
initialized and terminated for each inbound conversation.
Contrast with multi-trans.

standard transaction program. See transaction
program.

state. See conversation state.

state transition. The act of moving from one
conversation state to another.

subarea. A portion of an SNA network that consists of
a subarea node, and any attached links and peripheral
nodes.

subordinate address space. An address space,
managed by a transaction scheduler, in which a
transaction program runs.

subsystem interface. The subsystem interface (SSI)
is the means by which MVS system routines request
services of the master subsystem, a job entry
subsystem, or any subsystem defined to MVS through
the subsystem definition process.

symbolic destination name. A variable that specifies
the symbolic name of the destination LU and partner
program, as well as the mode name for the session
carrying the conversation. The symbolic destination
name is provided by the transaction program and points
to an entry in the side information.

Synchronous Data Link Control. A discipline for
managing synchronous, code-transparent, serial-by-bit,
information transfer over a link. SDLC conforms to
subsets of the Advanced Data Communication Control
Procedures (ADCCP) of the American National
Standards Institute and High-level Data Link Control
(HDLC) of the International Standards Organization.

sync point. An intermediate or end point during
processing of a transaction at which an update or
modification to one or more of the transaction’s

protected resources is logically complete and error free.
Synonymous with synchronization point, commit point,
and point of consistency.

sync point manager (SPM). The component of the
node that implements two-phase commit and
resynchronization processing. In an MVS system, the
component is RRS.

SYSOUT. A system output stream; also, an indicator
used in data definition statements to signify that a data
set is to be written on a system output unit.

sysplex. A sysplex (systems complex) is the set of
one or more MVS systems that is given an XCF sysplex
name and in which programs in the systems can then
use XCF services.

system base LU. A logical unit that is the default LU
for outbound work requests from MVS programs (TSO/E
users, started tasks, and other work) that are not
associated with a scheduler or an LU. The system base
LU is either:

v An LU defined with the NOSCHED and BASE
parameters, or

v If a base NOSCHED LU is not defined, the LU
defined as the base LU for the APPC/MVS
transaction scheduler.

System Display and Search Facility. The System
Display and Search Facility is a program product that
acts as a system management aid allowing users to
efficiently analyze and control the operation of an
MVS/JES2-based system.

system services control point. A focal point within an
SNA network for managing the configuration,
coordinating network operator and problem
determination requests, and providing directory services
and other session services for end users of a network.
Multiple SSCPs, cooperating as peers with one another,
can divide the network into domains of control, with
each SSCP having a hierarchical control relationship to
the physical units and logical units within its own
domain.

Systems Network Architecture (SNA). A description
of the logical structure, formats, protocols, and
operational sequences for transmitting information units
through, and controlling the configuration and operation
of networks.

systems programming interface (SPI). Provides
languages, commands and calls that allow the
development of applications that are more easily
integrated and moved across multiple environments.

T
telecommunication link. A physical medium, such as
a wire or microwave beam, that is used to transmit data.

Glossary

D-6 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

test shell. A program that sets up an environment to
test transaction programs in its own address space,
using APPC/MVS Test services. The TSO/E TEST
command is an example of a test shell.

TP. See transaction program.

TP instance. A copy of a transaction program (TP) on
MVS, scheduled and initiated in response to an inbound
allocate request. A TP instance differs from a TP in that
a TP is a program using communication functions and a
TP instance is the actual processing of those functions
in MVS. Multiple instances of the same TP can run
simultaneously, each in response to a separate request
and on behalf of a different user.

See also TP_ID.

TP message log. A log that contains runtime
messages for a transaction program. The parameters
that define the TP message log are in the program’s TP
profile and in an ASCHPMxx parmlib member.

TP profile. The information required to establish the
environment for and attach a transaction program on
MVS, in response to an inbound allocate request for
that transaction program.

TP_ID. Transaction Program Identifier: a unique
8-character token that APPC/MVS assigns to each
instance of a transaction program. When multiple
instances of a transaction program are running
simultaneously, they have the same transaction program
name, but each has a unique TP_ID.

TP_Schedule_Type. A type of transaction program,
based on attributes provided by the transaction
programmer. Those attributes can influence the
performance of the transaction program, and must be
reflected in the TP profile. For more information about
specific TP_Schedule_Types in APPC/MVS, see
standard and multi_trans.

transaction. A unit of work performed by one or more
transaction programs, involving a specific set of input
data and initiating a specific process or job.

transaction initiator. A program that runs in a
subordinate address space of the APPC/MVS
transaction scheduler and initiates an APPC transaction
program in response to an inbound request.

transaction program (TP). A program used for
cooperative transaction processing within an SNA
network. For APPC/MVS, any program on MVS that
issues APPC/MVS or CPI Communication calls, or is
scheduled by the APPC/MVS transaction scheduler.

transaction scheduler. A scheduler program that is
responsible for job management of incoming work
requests from cooperative transaction programs. The
default transaction scheduler for APPC/MVS is the
APPC/MVS transaction scheduler; however, an

installation can define and use alternative transaction
schedulers for specific applications.

two-phase commit. (1) The protocol that permits
updates to protected resources to be committed or
backed out as a unit. During the first phase, resource
managers are asked if they are ready to commit. If all
resource managers respond positively, they are asked
to commit their updates. Otherwise, the resource
managers are asked to back out their updates. (2) The
protocols used by the sync point manager to accomplish
a commit operation.

U
unit of recovery. A sequence of operations within a
unit of work between sync points.

unit_of_work_id. An 8-character ID assigned by a
transaction scheduler to an inbound allocate request.
The APPC/MVS transaction scheduler uses this value
as the job ID when the inbound TP is initiated on MVS.

unprotected conversation. An LU 6.2 conversation
that has a synchronization level of none or confirm. If
conversation errors or failures occur, the resources used
by the application might be in inconsistent states.
Contrast with protected conversation.

userid. (1) A symbol identifying a system user. (2) A
code that uniquely identifies a user to the system.

user token. A collection of identity and security
information that represents a user or a job. The token
contains a userid, groupid, security class, origin node,
and session type, where session type is TSO/E logon,
started task, batch job, operator, or trusted computing
base.

UTOKEN. See user token.

V
verb. The SNA term for a conversation function that
transaction programs can use to communicate with
each other through the LU 6.2 protocol boundary. The
SNA verbs provide similar functions but are
implemented differently on the different systems (MVS,
VM, OS/2 and OS/400) that support them. See also
communication call.

W
work_unit_identifier (WUID). See unit_of_work_id.

X
XCF. See cross-system coupling facility.

Glossary

Glossary D-7

Glossary

D-8 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Index

Numerics
00640 character set

contents A-1
01134 character set

contents A-1

A
APPC/MVS

system services
overview 1-1

SYSTEM services
reference 0-5

assembler programming language
call syntax 3-1

ATBASOC (Associate) service 4-1
ATBCAS1 (Cleanup_Address_Space) service 4-5
ATBCMAS (Cleanup_Address_Space) service B-1
ATBCMTP (Cleanup_TP) service B-4
ATBCNTL (Control) service 4-17
ATBCONN (Connect) service 4-15
ATBCSASM member

in SYS1.MACLIB 3-3
ATBCTP1 (Cleanup_TP) service B-7
ATBCTP3 (Cleanup_TP) service 4-9
ATBDCON (Disconnect) service 4-22
ATBDFTP (Define_Local_TP) service 4-19
ATBDFTPE member

in SYS1.MACLIB 5-9
ATBIDEN (Identify) service B-10
ATBIDN1 (Identify) service B-16
ATBIDN4 (Identify) service 4-23
ATBJGP1 (Join_SYSAPPC_Group) service 4-30
ATBMIGRP (Join_Sysappc_Group) service B-23
ATBSASA (Set_AS_Attributes) service 4-33
ATBSECB member

in SYS1.MACLIB 5-7
ATBUID1 (Unidentify) service 4-35
ATBUNID (Unidentify) service B-25
ATBXCFMS member

in SYS1.MACLIB 5-2

C
call syntax

for APPC/MVS system services 3-1
character set

used in APPC/MVS A-1

E
error log information

sending with the Cleanup_TP service 4-14

I
information extract exit 5-6
IXCYMEPL mapping macro

information mapped 5-5

L
linkage conventions

for system services 3-1

N
Notices C-1

S
SYS1.MACLIB library

ATBCSASM member 3-3
ATBDFTPE member 5-9
ATBSECB member 5-7
ATBXCFMS member 5-2

T
TP profile

conversion exit 5-8
syntax message routine 5-12

TP profile syntax message routine 5-12
transaction program

characters used in name A-1
transaction scheduler

exits
information extract exit 5-6
TP profile conversion exit 5-8
TP profile syntax exit 5-10
TP profile syntax message routine 5-12
XCF message user routine 5-1

services
overview 1-1
reference 0-5

start-up and termination 2-1
type A character set

contents A-1

X
XCF (cross-system coupling facility)

APPC XCF group
communicating between APPC transaction

schedulers 1-2
joining, for transaction schedulers 4-30, B-23

information mapped 5-5
message user routine

input from APPC/MVS 5-1

© Copyright IBM Corp. 1991, 2001 X-1

X-2 z/OS V1R1.0 MVS Writing Transaction Schedulers for APPC/MVS

Readers’ Comments — We’d Like to Hear from You

z/OS
MVS Programming:
Writing Transaction Schedulers
for APPC/MVS

Publication No. SA22-7622-00

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
SA22-7622-00

SA22-7622-00

����
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Department 55JA, Mail Station P384
2455 South Road
Poughkeepsie, NY
12601-5400

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Program Number: 5694-A01

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SA22-7622-00

	Contents
	Figures
	About This Book
	Who Should Use This Book
	How to Use This Book
	Where to Find More Information
	Using LookAt to look up message explanations
	Accessing licensed books on the Web

	Summary of Changes
	Part 1. An Introduction to APPC/MVS System Services
	Chapter 1. Transaction Scheduler Services in APPC/MVS
	Chapter 2. General Transaction Scheduler Function: FromStart-up to Termination
	Part 2. APPC/MVS System Services Reference
	Chapter 3. Invocation Details for APPC/MVS System Services
	Syntax Conventions for the System Services
	Linkage Conventions for the System Services
	Parameter Description for Callable Services
	Versions of Callable Services
	Interface Definition File (IDF)

	Chapter 4. APPC/MVS System Services Summary
	Associate
	Cleanup_Address_Space
	Cleanup_TP
	Sending Error Log Information

	Connect
	Control
	Define_Local_TP
	Disconnect
	Identify
	Join_Sysappc_Group
	Set_AS_Attributes
	Unidentify

	Chapter 5. Transaction Scheduler User Exits
	XCF Message User Routine
	Environment
	Processing
	Message Types
	Programming Notes for LU Activation/Deactivation Messages
	Programming Notes for Allocate TP Request Messages

	Programming Considerations
	Entry Specifications
	Registers at Entry
	Parameter List Contents

	Return Specifications

	Extract Exit
	Environment
	Exit Recovery
	Programming Requirements
	Entry Specifications
	Registers on Entry
	Scheduler Extract Control Block

	Return Specifications

	TP Profile Conversion Exit
	Environment
	Exit Recovery
	Programming Requirements
	Installation
	Entry Specifications
	Registers on Entry
	Parameter List Contents

	Return Specifications

	TP Profile Syntax Exit
	Environment
	Exit Recovery
	Programming Requirements
	Installation
	Entry Specifications
	Registers on Entry
	Parameter List Contents

	Return Specifications

	Profile Syntax Message Routine
	Environment
	Entry Specifications
	Registers on Entry
	Parameter List Contents

	Return Specifications

	Part 3. Appendixes
	Appendix A. Character Sets
	Appendix B. Previous Versions of APPC/MVS SystemServices
	ATBCMAS— Cleanup_Address_Space
	ATBCMTP— Cleanup_TP
	ATBCTP1— Cleanup_TP
	ATBIDEN— Identify
	ATBIDN1— Identify
	ATBMIGRP— Join_Sysappc_Group
	ATBUNID— Unidentify

	Appendix C. Notices
	Programming Interface Information
	Trademarks

	Glossary
	Index
	Readers’ Comments — We'd Like to Hear from You

